• Title/Summary/Keyword: Signal-to noise ratio

Search Result 3,054, Processing Time 0.031 seconds

Ultrasensitive Crack-based Mechanosensor Inspired by Spider's Sensory Organ (거미의 감각기관을 모사한 초민감 균열기반 진동압력센서)

  • Suyoun Oh;Tae-il Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Spiders detect even tiny vibrations through their vibrational sensory organs. Leveraging their exceptional vibration sensing abilities, they can detect vibrations caused by prey or predators to plan attacks or perceive threats, utilizing them for survival. This paper introduces a nanoscale crack-based sensor mimicking the spider's sensory organ. Inspired by the slit sensory organ used by spiders to detect vibrations, the sensor with the cracks detects vibrations and pressure with high sensitivity. By controlling the depth of these cracks, they developed a sensor capable of detecting external mechanical signals with remarkable sensitivity. This sensor achieves a gauge factor of 16,000 at 2% strain with an applied tensile stress of 10 N. With high signal-to-noise ratio, it accurately recognizes desired vibrations, as confirmed through various evaluations of external force and biological signals (speech pattern, heart rate, etc.). This underscores the potential of utilizing biomimetic technology for the development of new sensors and their application across diverse industrial fields.

Characteristic Analysis of Wireless Channels to Construct Wireless Network Environment in Underground Utility Tunnels (지하공동구 내 무선 네트워크 환경구축을 위한 무선채널 특성 분석)

  • Byung-Jin Lee;Woo-Sug Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.27-34
    • /
    • 2024
  • The direct and indirect damages caused by fires in underground utility tunnels have a great impact on society as a whole, so efforts are needed to prevent and manage them in advance. To this end, research is ongoing to prevent disasters such as fire flooding by applying digital twin technology to underground utility tunnels. A network is required to transmit the sensed signals from each sensor to the platform. In essence, it is necessary to analyze the application of wireless networks in the underground utility tunnel environments because the tunnel lacks the reception range of external wireless communication systems. Within the underground utility tunnels, electromagnetic interference caused by transmission and distribution cables, and diffuse reflection of signals from internal structures, obstacles, and metallic pipes such as water pipes can cause distortion or size reduction of wireless signals. To ensure real-time connectivity for remote surveillance and monitoring tasks through sensing, it is necessary to measure and analyze the wireless coverage in underground utility tunnels. Therefore, in order to build a wireless network environment in the underground utility tunnels. this study minimized the shaded area and measured the actual cavity environment so that there is no problem in connecting to the wireless environment inside the underground utility tunnels. We analyzed the data transmission rate, signal strength, and signal-to-noise ratio for each section of the terrain of the underground utility tunnels. The obtained results provide an appropriate wireless planning approach for installing wireless networks in underground utility tunnels.

Development of $^1H-^{31}P$ Animal RF Coil for pH Measurement Using a Clinical MR Scanner (임상용 MR에서 pH 측정을 위한 동물 실험용 $^1H-^{31}P$ RF 코일 개발)

  • Kim, Eun Ju;Kim, Daehong;Lee, Sangwoo;Heo, Dan;Lee, Young Han;Suh, Jin-Suck
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Purpose : To establish a pH measurement system for a mouse tumor study using a clinical scanner, to develop the $^1H$ and 31P radio frequency (RF) coil system and to test pH accuracy with phantoms. Materials and Methods: The $^1H$ and the $^{31}P$ surface coils were designed to acquire signals from mouse tumors. Two coils were positioned orthogonally for geometric decoupling. The pH values of various pH phantoms were calculated using the $^1H$ decoupled $^{31}P$ MR spectrum with the Henderson-Hasselbalch equation. The calculated pH value was compared to that of a pH meter. Results: The mutual coil coupling was shown in a standard $S_{12}$. Coil coupling ($S_{12}$) were -73.0 and -62.3 dB respectively. The signal-to-noise ratio (SNR) obtained from the homogeneous phantom $^1H$ image was greater than 300. The high resolution in vivo mice images were acquired using a $^{31}P$-decoupled $^1H$ coil. The pH values calculated from the $^1H$-decoupled $^{31}P$ spectrum correlated well with the values measured by pH meter ($R^2$=0.97). Conclusion: Accurate pH values can be acquired using a $^1H$-decoupled $^{31}P$ RF coil with a clinical scanner. This two-surface coil system could be applied to other nuclear MRS or MRI.

The usefulness of the contrast agent high in gadolinium for the contrast-enhanced magnetic resonance hip arthrography (고관절의 자기공명관절조영검사 시 가돌리늄 함유량이 높은 조영제의 유용성)

  • Choi, Kwan-Woo;Kim, Yoon-Shin;Son, Soon-Yong;Lee, Ho-Beom;Na, Sa-Ra;Min, Jung-Whan;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5682-5688
    • /
    • 2013
  • The purpose of this study is to maximize diagnositc usefulness with increasing signal to noise ratio(SNR) and contrast to noise ratio(CNR) by using a 1mmol/mL gadolinium contrast agent. From January 2012 to June 2013 fourty-seven patients were underwent the MRI scanning to investigate the contrast difference in gadolinium content. Twenty of the patients were injencted the commercial contrast agent containing 0.5mmol/mL gadolinium and the rest of them were injected the new contrast agent containing 1mmol/mL gadolinium called gadobutrol. We measured and evaluated each SNR and CNR of the hip joint space, iliopsoas muscle and femoral head. As a result, using the 1mmol/mL gadolinium contrast agent had the higher SNR results than using the 0.5mmol/mL agent(27% in the hip joint, 30.01% in the femoral head). Also CNR using the 1mmol/mL gadolinium agent was proved to be higher than that of using 0.5mmol/mL agent(28.31% in the ilopsoas muscle and 26.74% in the femoral head). Therefore, the contrast agent containing more gadolinium like 1mmol/mL used in this study is more effective to shorten T1 relaxation time, so it increases the signal intensity and CNR and furthermore maximizes diagnostic value. This study reports the usefulness of the 1mmol/mL contrast agent in the contrast-enhanced magnetic resonance hip arthrography for the first. Therefore, it can be considered to have an meaningful academic value as showing the method for increasing the diagnostic usefulness by using the 1mmol/mL contrast agent.

Uncertainties of SO2 Vertical Column Density Retrieval from Ground-based Hyper-spectral UV Sensor Based on Direct Sun Measurement Geometry (지상관측 기반 태양 직달광 관측장비의 초분광 자외센서로부터 이산화황 연직칼럼농도의 불확실성 분석 연구)

  • Kang, Hyeongwoo;Park, Junsung;Yang, Jiwon;Choi, Wonei;Kim, Daewon;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.289-298
    • /
    • 2019
  • In this present study, the effects of Signal to Noise Ratio (SNR), Full Width Half Maximum (FWHM), Aerosol Optical Depth (AOD), $O_3$ Vertical Column Density ($O_3$ VCD), and Solar Zenith Angle (SZA) on the accuracy of sulfur dioxide Vertical Column Density ($SO_2$ VCD) retrieval have been quantified using the Differential Optical Absorption Spectroscopy (DOAS) method with the ground-based direct-sun synthetic radiances. The synthetic radiances produced based on the Beer-Lambert-Bouguer law without consideration of the diffuse effect. In the SNR condition of 650 (1300) with FWHM = 0.6 nm, AOD = 0.2, $O_3$ VCD = 300 DU, and $SZA=30^{\circ}$, the Absolute Percentage Difference (APD) between the true $SO_2$ VCD values and those retrieved ranges from 80% (28%) to 16% (5%) for the $SO_2$ VCD of $8.1{\times}10^{15}$ and $2.7{\times}10^{16}molecules\;cm^{-2}$, respectively. For an FWHM of 0.2 nm (1.0 nm) with the $SO_2$ VCD values equal to or greater than $2.7{\times}10^{16}molecules\;cm^{-2}$, the APD ranges from 6.4% (29%) to 6.2% (10%). Additionally, when FWHM, SZA, AOD, and $O_3$ VCD values increase, APDs tend to be large. On the other hand, SNR values increase, APDs are found to decrease. Eventually, it is revealed that the effects of FWHM and SZA on $SO_2$ VCD retrieval accuracy are larger than those of $O_3$ VCD and AOD. The SZA effects on the reduction of $SO_2$ VCD retrieval accuracy is found to be dominant over the that of FWHM for the condition of $SO_2$ VCD larger than $2.7{\times}10^{16}molecules\;cm^{-2}$.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Performance analysis and operation simulation of the beamforming antenna applied to cellular CDMA basestation (셀룰러 CDMA 기지국에 beamforming 안테나를 적용하기 위한 동작 시뮬레이션 및 성능해석에 관한 연구)

  • Park, Jae-Jun;Bae, Byeong-Jae;Jang, Tae-Gyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.32-45
    • /
    • 2000
  • This paper presents the analytic derivation of the SINR, when a linear array antenna is accommodated into the cellular CDMA basestation receiver, in relation to the two major performance effecting factors in beamforming(BF) applications, i. e., the direction selectivity, which refers to the narrowness of the mainbeam width, and the direction-of-arrival(DOA) estimation accuracy. The analytically derived results are compared with the operation simulation of the receiver realized with the several BF algorithms and their agreements are confirmed, consequently verifying the correctness of the analysis and the operation simulation. In order to investigate separately the effects of the errors occurring in the direction estimation and in the interference suppression, which are the two major functional components of general BF algorithms, both the algorithms of steering BF and the minimum- variance- distortionless-response(MVDR) BF are applied to the analysis. A signal model to reflect the spatially scattering phenomenon of the RF waves entering into the .:nay antenna, which directly affects on the accuracy of the BF algorithm's direction estimation, is also suggested in this paper and applied to the analysis and the operation simulation. It is confirmed from the results that the enhancement of the direction selectivity of the away antenna is not desirable in view of both the implementation economy and the BF algorithm's robustness to the erroneous factors. Such a trade-off characteristics is significant in the sense that it can be capitalized to obtain an economic means of BF implementation that does not severely deteriorate its performance while ensuring the robustness to the erroneous effects, consequently manifesting the significance of the analysis results of this paper that can be used as a design reference in developing BF algorithms to the cellular CDMA system.

  • PDF

Design and Implementation of Adaptive Beam-forming System for Wi-Fi Systems (무선랜 시스템을 위한 적응형 빔포밍 시스템의 설계 및 구현)

  • Oh, Joohyeon;Gwag, Gyounghun;Oh, Youngseok;Cho, Sungmin;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2109-2116
    • /
    • 2014
  • This paper presents the implementation and design of the advanced WI-FI systems with beam-forming antenna that radiate their power to the direction of user equipment to improve the overall throughput, contrast to the general WI-FI systems equipped with omni-antenna. The system consists of patch array antenna, DSP, FPGA, and Qualcomm's commercial chip. The beam-forming system on the FPGA utilizes the packet information from Qualcomm's commercial chip to control the phase shifters and attenuators of the patch array antenna. The PCI express interface has been used to maximize the communication speed between DSP and FPGA. The directions of arrival of users are managed using the database, and each user is distinguished by the MAC address given from the packet information. When the system wants to transmit a packet to one user, it forms beams to the direction of arrival of the corresponding user stored in the database to maximize the throughput. Directions of arrival of users are estimated using the received preamble in the packet to make its SINR as high as possible. The proposed beam-forming system was implemented using an FPGA and Qualcommm's commercial chip together. The implemented system showed considerable throughput improvement over the existing general AP system with omni-directional antenna in the multi-user communication environment.

Color-Texture Image Watermarking Algorithm Based on Texture Analysis (텍스처 분석 기반 칼라 텍스처 이미지 워터마킹 알고리즘)

  • Kang, Myeongsu;Nguyen, Truc Kim Thi;Nguyen, Dinh Van;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • As texture images have become prevalent throughout a variety of industrial applications, copyright protection of these images has become important issues. For this reason, this paper proposes a color-texture image watermarking algorithm utilizing texture properties inherent in the image. The proposed algorithm selects suitable blocks to embed a watermark using the energy and homogeneity properties of the grey level co-occurrence matrices as inputs for the fuzzy c-means clustering algorithm. To embed the watermark, we first perform a discrete wavelet transform (DWT) on the selected blocks and choose one of DWT subbands. Then, we embed the watermark into discrete cosine transformed blocks with a gain factor. In this study, we also explore the effects of the DWT subbands and gain factors with respect to the imperceptibility and robustness against various watermarking attacks. Experimental results show that the proposed algorithm achieves higher peak signal-to-noise ratio values (47.66 dB to 48.04 dB) and lower M-SVD values (8.84 to 15.6) when we embedded a watermark into the HH band with a gain factor of 42, which means the proposed algorithm is good enough in terms of imperceptibility. In addition, the proposed algorithm guarantees robustness against various image processing attacks, such as noise addition, filtering, cropping, and JPEG compression yielding higher normalized correlation values (0.7193 to 1).

Correlation Analysis of Signal to Noise Ratio (SNR) and Suspended Sediment Concentration (SSC) in Laboratory Conditions (실험수로에서 신호대잡음비와 부유사농도의 상관관계 분석)

  • Seo, Kanghyeon;Kim, Dongsu;Son, Geunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.775-786
    • /
    • 2017
  • Monitoring sediment flux is crucial especially for maintaining river systems to understand morphological behaviors. Recently, hydroacoustic backscatter (or SNR) as a surrogate to empirically estimate suspended sediment concentration has been increasingly highlighted for more efficient acquisition of sediment dataset, which is difficult throughout direct sediment sampling. However, relevant contemporary researches have focused on wide range solution applicable for large natural rivers where H-ADCPs with relatively low acoustic frequency have been widely utilized to seamlessly measure streamflow discharge. In this regard, this study aimed at investigating hydroacoustical characteristics based on a very recently released H-ADCP (SonTek SL-3000) with high acoustic frequency of 3 MHz in order to capitalize its capacity to be applied for suspended sediment monitoring in laboratory conditions. SL-3000 was tested in a laboratory flume to collect SNR in conjunction with LISST-100X for actual sediment concentration and particle distribution in both sand and silt sediment injection in various amount. Conventional algorithms to correct signal attenuations for water and sediment were carefully tested to validate whether they can be applied for SL-3000. As result of analyzing the SNR-SSC correlation trand, through further study in the future, it is confirmed that SSC can be observed indirectly by using the SNR.