• Title/Summary/Keyword: Signal to Interference and Noise Ratio (SINR)

Search Result 163, Processing Time 0.025 seconds

Joint Subcarrier and Bit Allocation for Secondary User with Primary Users' Cooperation

  • Xu, Xiaorong;Yao, Yu-Dong;Hu, Sanqing;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3037-3054
    • /
    • 2013
  • Interference between primary user (PU) and secondary user (SU) transceivers should be mitigated in order to implement underlay spectrum sharing in cognitive radio networks (CRN). Considering this scenario, an improved joint subcarrier and bit allocation scheme for cognitive user with primary users' cooperation (PU Coop) in CRN is proposed. In this scheme, the optimization problem is formulated to minimize the average interference power level at the PU receiver via PU Coop, which guarantees a higher primary signal to interference plus noise ratio (SINR) while maintaining the secondary user total rate constraint. The joint optimal scheme is separated into subcarrier allocation and bit assignment in each subcarrier via arith-metric geo-metric (AM-GM) inequality with asymptotical optimization solution. Moreover, the joint subcarrier and bit optimization scheme, which is evaluated by the available SU subcarriers and the allocated bits, is analyzed in the proposed PU Coop model. The performance of cognitive spectral efficiency and the average interference power level are investigated. Numerical analysis indicates that the SU's spectral efficiency increases significantly compared with the PU non-cooperation scenario. Moreover, the interference power level decreases dramatically for the proposed scheme compared with the traditional Hughes-Hartogs bit allocation scheme.

Frequency Reuse and Sub-cell Coverage Determination Scheme for Improved Throughput in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 개선을 위한 자원 재사용과 커버리지 설정기법)

  • Hyun, Myung-Reun;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.414-420
    • /
    • 2009
  • In this paper, we investigate throughput performance of OFDMA-based relay systems according to the "sub-cell coverage configuration" of the base station (RS) and the relay station (RS). RS is exploited for improved quality of the received signal with a tradeoff of additional radio resource consumption which may result in degradation of the throughput performance of the system. Therefore, "radio resource reuse" may be necessary for high performance in relay systems. However, it also causes system performance degradation since resource reuse between RSs incurs channel interference. Therefore, effective resource reuse also should be considered for "high throughput coverage configuration" when relays are employed. We relate the resource reuse patterns of neighboring RSs to sub-cell coverage configuration. We determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the mobile station (MS) from the BS and RS, respectively. Simulations illustrate the throughput performance as the function of SINR ratio, and it has different optimal point depending on the resource reuse patterns. Therefore, the "resource reuse pattern" and the "effective sub-cell coverage configuration" should be considered together for the high throughput performance of the relay system.

Scheduling Method based on SINR at Cell Edge for multi-mode mobile device (멀티모드 단말기를 위한 셀 경계 지역에서의 SINR 기반 사용자 선택 방법)

  • Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 2015
  • We consider a cell edge environment. In cell edge, a user interfered by signal which is generated by a base stations not including the user. In cell edge environment, that is, there are inter cell interference (ICI) as well as multi user interference (MUI). Coordinated multi-point transmission (CoMP) is a technique which mitigates ICI between base stations. In CoMP, therefore, base stations can coordinate with each other by sharing user state information (CSI) in order to mitigate ICI. To improve sum rate performance in CoMP, each base station should generate optimal user group and transmit data to users selected in the optimal user group. In this paper, we propose a user selection algorithm in CoMP. The proposed method use signal to interference plus noise ratio (SINR) as criterion of selecting users. Because base station can't measure accurate SINR of users, in this paper, we estimate SINR equation considering ICI as well as MUI. Also, we propose a user selection algorithm based on the estimated SINR. Through MATAL simulation, we verify that the proposed method improves the system sum rate by an average of 1.5 ~ 3 bps/Hz compared to the conventional method.

Downlink SINR Analysis of Multihop Cellular Networks according to Relay Positions (멀티홉 셀룰러 네트워크에서 릴레이 위치에 따른 하향링크 SINR 분석)

  • Cho, Sung-Hyun;Moon, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.594-599
    • /
    • 2010
  • This paper studies the effect of the deployment position of the relay stations on the downlink signal-to-interference-noise-ratio (SINR) in multihop cellular networks. Two different relay deployment scenarios are considered where relay stations are located either inside cells or on the boundary among adjacent cells. The fundamental contribution is to compare fairly the average SINR between two scenarios with the proposed relay modeling framework that includes multi-cell geometries and inter-cell interferences. The mathematical results show that the SINR increases when relay stations are located inside cells because of higher received signal power.

Performance Analysis of Beamforming in Fading Channels for CDMA Systems (CDMA 시스템의 페이딩 채널에서 빔포밍의 성능 분석)

  • Choi, Jae-Myeong;Kang, Heau-Jo;Sung, Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.347-350
    • /
    • 2007
  • Adaptive arrays have been proposed as an effective means of mitigating Multiple Access Interference (MAI) and improving the performance of existing and future wireless communication systems. In this paper, we apply the analytical method proposed to analyse the theoretical Mean Bit Error Rate (BER) of an uncoded IS-95 based CDMA system with an array antenna at the BS in a Ricean fading environment. We present a modified expression for the Signal to Interference plus Noise (SINR) ratio as a function of the number of users, number of antennas and noise levels. We also verify the analytical results by means of simulations by considering different user and channel scenarios.

  • PDF

SINR Expression of an Adaptive Array Based on Composite and Null Despreaders for Multiple GPS Signals (다수개의 GPS 신호들을 위한 혼합 역확산기와 널 역확산기 기반의 적응 어레이의 SINR 표현)

  • Hwang, Suk-Seung;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.274-280
    • /
    • 2009
  • In order to estimate the accurate location of a user, Global Positioning system (GPS) requires at least four satellites. Since a conventional despreader operate for an GPS signal of interest, we need multiple despreaders for detecting multiple GPS signals. In this paper, we introduce the extension of the recently proposed system consisting of a null despreader, a conventional despreader, multi-stage CM (constant modulus) array, for the multiple GPS signals, and present the mathematical expression of the signal-to-interference-and-noise ratio (SINR). The extended system does not require the exact information of the direction of arrival (DOA) to suppress the directional interferences. We present the computer simulation to demonstrate the interference suppression performance of the proposed system for multiple GPS signals.

  • PDF

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation (효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.269-277
    • /
    • 2012
  • When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).

Optimum Superimposed Training for Mobile OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • Superimposed training (SIT) design for estimating of time-varying multipath channels is investigated for mobile orthogonal frequency division multiplexing (OFDM) systems. The design of optimum SIT consists of two parts: The optimal SIT sequence is derived by minimizing the channel estimates' mean square error (MSE); the optimal power allocation between training and information data is developed by maximizing the averaged signal to interference plus noise ratio (SINR) under the condition of equal powered paths. The theoretical analysis is verified by simulations. For the metric of the averaged SINR against signal to noise ratio (SNR), the theoretical result matches the simulation result perfectly. In contrast to an interpolated frequency-multiplexing training (FMT) scheme or an SIT scheme with random pilot sequence, the SIT scheme with proposed optimal sequence achieves higher SINR. The analytical solution of the optimal power allocation is demonstrated by the simulation as well.

Greedy Heuristic Resource Allocation Algorithm for Device-to-Device Aided Cellular Systems with System Level Simulations

  • Wang, Xianxian;Lv, Shaobo;Wang, Xing;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1415-1435
    • /
    • 2018
  • Resource allocation in device-to-device (D2D) aided cellular systems, in which the proximity users are allowed to communicate directly with each other without relying on the intervention of base stations (BSs), is investigated in this paper. A new uplink resource allocation policy is proposed by exploiting the relationship between D2D-access probability and channel gain among variant devices, such as cellular user equipments (CUEs), D2D user equipments (DUEs) and BSs, etc., under the constraints of their minimum signal to interference-plus-noise ratio (SINR) requirements. Furthermore, the proposed resource-allocation problem can be formulated as the cost function of "maximizing the number of simultaneously activated D2D pairs subject to the SINR constraints at both CUEs and DUEs". Numerical results relying on system-level simulations show that the proposed scheme is capable of substantially improving both the D2D-access probability and the network throughput without sacrificing the performance of conventional CUEs.

A Group Search-based Distributed Dynamic Channel Allocation Algorithm in Uplink Cellular System (상향링크 셀룰러 시스템에서 그룹 탐색 기반의 분산동적채널할당 방법)

  • Yoo, Doh-Kyoung;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.407-413
    • /
    • 2010
  • In DCA (Dynamic Channel Allocation) scheme of uplink cellular system appling a frequency reuse factor of one, when a new call requests a channel, the new call will be blocked if its SINR (Carrier to Noise and Interference Ratio) is less than the required SINR or there is no available channel. The additional channel allocation for the blocked new call can be performed with channel borrowing in the adjacent cells. The channel borrowing causes the CCI (Co-Channel Interference), thus the SINR of the existing calls is deteriorated and the channel reallocation for the existing calls is required. As a result, the channel borrowing leads to a complex calculation so that it is a NP-hard problem. Therefore, to overcome the problem, we propose a novel Group Search-based DCA scheme which decreases the number of the blocked new calls and then reduces the number of the channel reallocation by the channel borrowing for the blocked new calls. The proposed scheme searches the all channels in a group of the adjacent cells and home cell at the same time in order to minimizes the number of the blocked new calls. The simulation results show that proposed Group Search-based DCA scheme provides better new call blocking probability and system throughput than the existing Single Search-based DCA scheme which searches only the channels in home cell.