• 제목/요약/키워드: Signal frequency

검색결과 6,521건 처리시간 0.027초

Performance Comparison of Different GPS L-Band Dual-Frequency Signal Processing Technologies

  • Kim, Hyeong-Pil;Jeong, Jin-Ho;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권1호
    • /
    • pp.1-14
    • /
    • 2018
  • The Global Positioning System (GPS) provides more accurate positioning estimation performance by processing L1 and L2 signals simultaneously through dual frequency signal processing technology at the L-band rather than using only L1 signal. However, if anti-spoofing (AS) mode is run at the GPS, the precision (P) code in L2 signal is encrypted to Y code (or P(Y) code). Thus, dual frequency signal processing can be done only when the effect of P(Y) code is eliminated through the L2 signal processing technology. To do this, a codeless technique or semi-codeless technique that can acquire phase measurement information of L2 signal without information about W code should be employed. In this regard, this paper implements L2 signal processing technology where two typical codeless techniques and four typical semi-codeless techniques of previous studies are applied and compares their performances to discuss the optimal technique selection according to implementation environments and constraints.

Generalization of the Spreading Function and Weyl Symbol for Time-Frequency Analysis of Linear Time-Varying Systems

  • Iem, Byeong-gwan
    • 한국지능시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.628-632
    • /
    • 2001
  • We propose time-frequency (TF) tools for analyzing linear time-varying (LTV) systems and nonstationary random processes. Obtained warping the narrowband Weyl symbol (WS) and spreading function (SF), the new TF tools are useful for analyzing LTV systems and random processes characterized by generalized frequency shifts, This new Weyl symbol (WS) is useful in wideband signal analysis. We also propose WS an tools for analyzing systems which produce dispersive frequency shifts on the signal. We obtain these generalized, frequency-shift covariant WS by warping conventional, narrowband WS. Using the new, generalized WS, we provide a formulation for the Weyl correspondence for linear systems with instantaneous of linear signal transformation as weighted superpositions of non-linear frequency shifts on the signal. Application examples in signal and detection demonstrate the advantages of our new results.

  • PDF

A Performance Analysis of Multi-GNSS Receiver with Various Intermediate Frequency Plans Using Single RF Front-end

  • Park, Kwi Woo;Chae, Jeong Geun;Song, Se Phil;Son, Seok Bo;Choi, Seungho;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, to design a multi-GNSS receiver using single RF front-end, the receiving performances for various frequency plans were evaluated. For the fair evaluation and comparison of different frequency plans, the same signal needs to be received at the same time. For this purpose, two synchronized RF front-ends were configured using USRP X310, and PC-based software was implemented so that the quality of the digital IF signal received at each front-end could be evaluated. The software consisted of USRP control, signal reception, signal acquisition, signal tracking, and C/N0 estimation function. Using the implemented software and USRP-based hardware, the signal receiving performances for various frequency plans, such as the signal attenuation status, overlapping of different systems, and the use of imaginary or real signal, were evaluated based on the C/N0 value. The results of the receiving performance measurement for the various frequency plans suggested in this study would be useful reference data for the design of a multi-GNSS receiver in the future.

Wideband RF Interference Reduction Module

  • Kang, Sanggee;Hong, Heonjin;Chong, Youngjun
    • International journal of advanced smart convergence
    • /
    • 제11권3호
    • /
    • pp.28-35
    • /
    • 2022
  • Interference always exists between wireless communication systems used in the same frequency band or adjacent frequency bands. In order to deploy a new wireless communication system such as a 5G system, a new frequency band must be allocated to the system. For this purpose, after analyzing interference between the existing system and the new system, a method of setting a frequency guard band or a minimum separation distance has been used as a passive method to limit the interference effect. This paper presents a wideband RF IRM(Interference Reduction Module) that can actively reduce the influence of interference between wireless communication systems. The wideband RF IRM can reduce the interference effects of 5G signals on satellite signals. The principle and structure of the wideband RF IRM are presented. The wideband RF IRM can suppress approximately 20dB of interference signal in 100MHz bandwidth when only interference signal exists. It also shows that when a 5G interference signal of -45dBm/100MHz and a satellite signal of -55dBm/40MHz exist simultaneously at a center frequency of 3.83GHz, about 15dB of 5G interference signal can be reduced in the frequency range covered by the satellite signal. The experimental results demonstrate that the wideband RF IRM can actively reduce the 5G interference signal on the satellite signal and can be used for the purpose of reducing the interference effect in a similar environment.

가변 주파수 변환을 위한 시간 영역 다중채널 신호처리 알고리즘 (Time Domain Multiple-channel Signal Processing Method for Converting the Variable Frequency Band)

  • 유재호;김현수;이규하;이정섭;정재학
    • 한국통신학회논문지
    • /
    • 제35권1A호
    • /
    • pp.71-79
    • /
    • 2010
  • 다중채널 신호처리 알고리즘은 사용 주파수 대역의 가변성, 효율적인 전송전력 할당, 서로 다른 전송률과 대역을 요구하는 서비스 형태를 충족시키기 위한 가변 주파수 대역 변환을 요구한다. 본 논문에서는 다중채널 반송파 신호의 가변 주파수 대역 변환을 위해 시간 영역의 윈도우 함수와 DFT(Discrete Fourier Transform)를 이용한 다중채널 신호처리 알고리즘을 제안한다. 제안한 알고리즘은 기존의 주파수 영역에서 대역통과 신호처리를 하는 다중채널 신호처리 알고리즘과 달리, 시간 영역에서 윈도우 함수를 사용한 블록 신호처리를 하기 때문에 기존의 주파수 영역에서 신호처리 방식보다 연산이 간단하며 효율적인 주파수 변환을 할 수 있다. 전산모의 실험을 통해 제안한 알고리즘의 출력신호 복원과 가변 주파수 대역 변환이 효율적으로 이루어지는 것을 보였다.

신호 해석을 위한 웨이브렛 응용에 관한 연구 (A Study on Wavelet Application for Signal Analysis)

  • 배상범;류지구;김남호
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.302-305
    • /
    • 2005
  • Recently, many methods to analyze signal have been proposed and representative methods are the Fourier transform and wavelet transform. In these methods, the Fourier transform represents signal with combination cosine and sine at all locations in the frequency domain. However, it doesn't provide time information that particular frequency occurs in signal and denpends on only the global feature of the signal. So, to improve these points the wavelet transform which is capable of multiresolution analysis has been applied to many fields such as speech processing, image processing and computer vision. And the wavelet transform, which uses changing window according to scale parameter, presents time-frequency localization. In this paper, we proposed a new approach using a wavelet of cosine and sine type and analyzed features of signal in a limited point of frequency-time plane.

  • PDF

실린더를 이용한 서보 밸브 대역폭 주파수의 측정에 관한 연구 (Study on Bandwidth Frequency of Servovalve based on Metering Cylinder)

  • 김성동;안문용;전세형
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권3호
    • /
    • pp.44-51
    • /
    • 2015
  • In this study, a metering cylinder was constructed, and the velocity obtained from the linear velocity transducer (LVT) of the cylinder piston was used to evaluate the dynamic performance of an electro-hydraulic servovalve. Frequency response experiments involving the spool displacement and piston velocity (LVT signal) were conducted with different input signal amplitudes, hydraulic pipe diameters, and supply pressures. The spool displacement signal accurately reflected the performance of the servovalve. Meanwhile, the -3 dB bandwidth frequency of the LVT signal was similar to the spool displacement signal, except for a small-amplitude input signal, and the $-90^{\circ}$ phase lag bandwidth frequency showed some differences.

Photonic Generation of Frequency-tripling Vector Signal Based on Balanced Detection without Precoding or Optical Filter

  • Qu, Kun;Zhao, Shanghong;Li, Xuan;Zhu, Zihang;Tan, Qinggui
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.134-139
    • /
    • 2018
  • A novel approach for frequency-tripling vector signal generation via balanced detection without precoding and optical filter is proposed. The scheme is mainly utilizing an integrated dual-polarization quadrature phase shift keying (DPQPSK) modulator. In the DPQPSK modulator, one QPSK modulator is driven by an RF signal to generate high-order optical sidebands, while the other QPSK modulator is modulated by I/Q data streams to produce baseband vector signal as an optical carrier. After that, a frequency-tripling 16-quadrature-amplitude-modulation (16QAM) vector millimeter-wave (mm-wave) signal can be obtained by balanced detection. The proposed scheme can reduce the complexity of transmitter digital signal processing. The results show that, a 4 Gbaud baseband 16QAM vector signal can be generated at 30 GHz by frequency-tripling. After 10 km single-mode fiber (SMF) transmission, the constellation and eye diagrams of the generated vector signal perform well and a bit-error-rate (BER) below than 1e-3 can be achieved.

Super-High-Speed Lightwave Demodulation using the Nonlinearities of an Avalanche Photodiode

  • Park, Young-Kyu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권5호
    • /
    • pp.273-278
    • /
    • 2002
  • Even though the modulating signal frequency of the light is too high to detect directly, the signal can be extracted by frequency conversion at the same time as the detection by means of the non-linearity of the APD. An analysis is presented for super-high-speed optical demodulation by an APD with electronic mixing. A normalized gain is defined to evaluate the performance of the frequency conversion demodulation. The nonlinear effect of the internal capacitance was included in the small signal circuit analysis. We showed theoretically and experimentally that the normalized gain is dependent on the down converted difference frequency component. In the experiment, the down converted different frequency outputs became larger than the directly detected original signal for the applied local signal of 20㏈m.

고주파 신호에 의하여 변형된 저주파신호에서의 특성변수 추정 기법 (An Estimation method for Characteristic Parameters in a Low Frequency Signal Transformed by High Frequency Signals)

  • 유경열
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권2호
    • /
    • pp.86-88
    • /
    • 2002
  • An estimation method for the characteristic parameters in the low frequency signal is proposed in this paper. A low frequency signal is assumed to be modulated or distorted by high frequency terms. The algorithm proposed in this paper is designed to select set of local maximums in a successive manner, hence it is denoted as the iterative peak picking(IPP) algorithm. The IPP algorithm is operating in the time domain and is using only the comparison operation between two neighboring samples. Therefore, its computational complexity is very low and the delay caused by the computation is negligible, which make the real-time operation possible with economic hardware. The proposed algorithm is verified on the pitch estimation of speech signal and blood pulse estimation.