• Title/Summary/Keyword: Signal Localization

Search Result 571, Processing Time 0.028 seconds

Analysis of Localization Scheme for Ship Application Using Received Signal Strength (수신 신호 세기를 이용한 선박용 실내 위치 추정 알고리즘 분석)

  • Lee, Jung-Kyu;Lee, Seong Ro;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.643-650
    • /
    • 2014
  • Recently, the wireless communication applications are studied in various environment by the development of short range communication system like wireless sensor networks. This paper presents the analysis of localization schemes for ship application using received signal strength. The localization schemes using received signal strength from wireless networks are classified under two methods, which are Range based method and Range free method. Range based methods estimate the location with least square estimation based on estimated distance using path-loss model. Range free methods estimated the location with the information of anchor nodes linked to target. Simulation results show the appropriate localization scheme for each cabin environments based on the empirical path-loss model in warship's internal space.

Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques (단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정)

  • Cho, Sungjong;Jeong, Hyunjo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.152-159
    • /
    • 2013
  • A structural health monitoring(SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

Hybrid Kriging Algorithm For Localization Based On Received Signal Strength Measurements (수신 신호세기 기반 무선 측위를 위한 Hybrid Kriging 알고리즘)

  • Lee, Hyung-Keun;Kim, Hee-Sung;Shim, Ju-Young;Han, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.5
    • /
    • pp.483-493
    • /
    • 2008
  • For effective wireless localization utilizing signal strength measurements based on IEEE 802.11 WLAN standard diversity of mobile hardware, characteristics of is one of the important problems to be considered for advanced location-based services. For improved accuracy regardless of a bias originating from the mobile hardware characteristics, this paper proposes a new localization algorithm, which is named as the hybrid Kriging algorithm. To evaluate the performance characteristics of the proposed algorithm, simulation and experiment results are illustrated. By the simulation and experiment result, the proposed algorithm is more accurate than the well-known location finger-print method given the same density of reference measurements.

  • PDF

Source Localization of Single Impact Based on Higher Order Time Frequency (고차-시간 주파수 기술을 이용한 평판에서의 충격 위치추적)

  • Moon, Yoo-Sung;Lee, Sang-Kwon;Yang, Hong-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • The aim of this paper is to present the method of identifying the impact location on the plate. This basic research has the future purpose to achieve the human-interaction technology based on the signal processing, piezoelectric materials, and wave propagation. The present work concerning the location identification of a single impact on the plate simulated the waveform numerically generated by impact force and applied the SWFOM(sliced Wigner higher fourth order moment) to the waveform to get the arrival time differences due to impact force between three sensors attached to the plate. The simulated signal is useful to get the information for time interval for the only direct wave. This information is used the source localization by using experimental work. The measured signal is also used for source localization of a single impact based on the higher order time frequency as a novel work.

Attack-Resistant Received Signal Strength based Compressive Sensing Wireless Localization

  • Yan, Jun;Yu, Kegen;Cao, Yangqin;Chen, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4418-4437
    • /
    • 2017
  • In this paper a three-phase secure compressive sensing (CS) and received signal strength (RSS) based target localization approach is proposed to mitigate the effect of malicious node attack. RSS measurements are first arranged into a group of subsets where the same measurement can be included in multiple subsets. Intermediate target position estimates are then produced using individual subsets of RSS measurements and the CS technique. From the intermediate position estimates, the residual error vector and residual error square vector are formed. The least median of residual error square is utilized to define a verifier parameter. The selected residual error vector is utilized along with a threshold to determine whether a node or measurement is under attack. The final target positions are estimated by using only the attack-free measurements and the CS technique. Further, theoretical analysis is performed for parameter selection and computational complexity evaluation. Extensive simulation studies are carried out to demonstrate the advantage of the proposed CS-based secure localization approach over the existing algorithms.

Functional Identification of a Nuclear Localization Signal of MYB2 Protein in Giardia lamblia

  • Kim, Juri;Shin, Mee Young;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.6
    • /
    • pp.675-679
    • /
    • 2020
  • MYB2 protein was identified as a transcription factor that showed encystation-induced expression in Giardia lamblia. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of G. lamblia MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of G. lamblia glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507-#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLSGlMYB2. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLSGlMYB2 and G. lamblia glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in G. lamblia.

Indoor localization algorithm based on WLAN using modified database and selective operation (변형된 데이터베이스와 선택적 연산을 이용한 WLAN 실내위치인식 알고리즘)

  • Seong, Ju-Hyeon;Park, Jong-Sung;Lee, Seung-Hee;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.932-938
    • /
    • 2013
  • Recently, the Fingerprint, which is one of the methods of indoor localization using WLAN, has been many studied owing to robustness about ranging error by the diffraction and refraction of radio waves. However, in the signal gathering process and comparison operation for the measured signals with the database, this method requires time consumption and computational complexity. In order to compensate for these problems, this paper presents, based on proposed modified database, WLAN indoor localization algorithm using selective operation of collected signal in real time. The proposed algorithm reduces the configuration time and the size of the data in the database through linear interpolation and thresholding according to the signal strength, the localization accuracy, while reducing the computational complexity, is maintained through selective operation of the signals which are measured in real time. The experimental results show that the accuracy of localization is improved to 17.8% and the computational complexity reduced to 46% compared to conventional Fingerprint in the corridor by using proposed algorithm.

Algorithms for Localization of a Moving Target in RFID Systems (RFID 시스템에서 이동체의 위치 추적을 위한 알고리즘)

  • Joo, Un-Gi
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.239-245
    • /
    • 2010
  • This paper considers a localization problem of a moving tag on RFID(Radio Frequency Identification) systems, where a positioning engine collects TDOA(Time-difference of Arrival) signal from a target tag to estimate the position of the tag. To localize the tag in the RFID system, we develop two heuristic algorithms and evaluate their performance in the estimation error and computational time by using randomly generated numerical examples. Based upon the performance evaluation, we can conclude our algorithms are valuable for localization the moving target.

Precise Indoor Localization System for a Mobile Robot Using Auto Calibration Algorithm (Auto Calibration Algorithm을 이용한 이동 로봇의 정밀 위치추정 시스템)

  • Kim, Sung-Bu;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.40-47
    • /
    • 2007
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the absolute location of the moving objects subjected to large errors. To implement a precise and convenient localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. Since it is not easy to install the beacons at a specific position precisely, there exists a large localization error and the installation time takes long. To overcome these problems, and provide a precise and convenient localization system, a new auto calibration algorithm is developed in this paper. Also the extended Kalman filter has been adopted for improving the localization accuracy during the mobile robot navigation. The localization accuracy improvement through the proposed auto calibration algorithm and the extended Kalman filter has been demonstrated by the real experiments.

  • PDF

EKF based Mobile Robot Indoor Localization using Pattern Matching (패턴 매칭을 이용한 EKF 기반 이동 로봇 실내 위치 추정)

  • Kim, Seok-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 2012
  • This paper proposes how to improve the performance of CSS-based indoor localization system. CSS based localization utilizes signal flight time between anchors and tag to estimate distance. From the distances, the 3-dimensional position is calculated through trilateration. However the error in distance caused from multi-path effect transfers to the position error especially in indoor environment. This paper handles a problem of reducing error in raw distance information. And, we propose the new localization method by pattern matching instead of the conventional localization method based on trilateration that is affected heavily on multi-path error. The pattern matching method estimates the position by using the fact that the measured data of near positions possesses a high similarity. In order to gain better performance of localization, we use EKF(Extended Kalman Filter) to fuse the result of CSS based localization and robot model.