• Title/Summary/Keyword: Signal Information

Search Result 11,683, Processing Time 0.041 seconds

Reproducibility of Electromyography Signal Amplitude during Repetitive Dynamic Contraction

  • Mo, Seung-Min;Kwag, Jong-Seon;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.689-694
    • /
    • 2011
  • Objective: The aim of this study is to evaluate the fluctuation of signal amplitude during repetitive dynamic contraction based on surface electromyography(EMG). Background: The most previous studies were considered isometric muscle contraction and they were difference to smoothing window length by moving average filter. In practical, the human movement is dynamic state. Dynamic EMG signal which indicated as the nonstationary pattern should be analyzed differently compared with the static EMG signal. Method: Ten male subjects participated in this experiment, and EMG signal was recorded by biceps brachii, anterior/posterior deltoid, and upper/lower trapezius muscles. The subject was performed to repetitive right horizontal lifting task during ten cycles. This study was considered three independent variables(muscle, amplitude processing technique, and smoothing window length) as the within-subject experimental design. This study was estimated muscular activation by means of the linear envelope technique(LE). The dependent variable was set coefficient of variation(CV) of LE for each cycle. Results: The ANOVA results showed that the main and interaction effects between the amplitude processing technique and smoothing window length were significant difference. The CV value of peak LE was higher than mean LE. According to increase the smoothing window length, this study shows that the CV trend of peak LE was decreased. However, the CV of mean LE was analyzed constant fluctuation trend regardless of the smoothing window length. Conclusion: Based on these results, we expected that using the mean LE and 300ms window length increased reproducibility and signal noise ratio during repetitive dynamic muscle contraction. Application: These results can be used to provide fundamental information for repetitive dynamic EMG signal processing.

Establishment and Effectiveness Analysis of Emergency Vehicle Priority Signal Control System in Smart City and Directions for ISMS-P Technical Control Item Improvement (스마트시티 내 긴급차량 우선신호 제어시스템 구축과 효과성 분석 및 ISMS-P 기술적 통제항목 개선 방향성 연구)

  • Yoon, TaeSeok;Park, Yongsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1166-1175
    • /
    • 2021
  • We investigate the current situation and development trend of domestic smart city and emergency vehicle priority signal control system analyzing the existing effectiveness of 1) emergency vehicle priority signal control system and 2) control emergency vehicle priority signal, based on domestic and foreign prior research for signal control system security. The effectiveness of time reduction was analyzed through actual application and test operation to emergency vehicles after establishing the system. In addition, for security management and stable service of real-time signal system control we propose improvement for the technical control items of the ISMS-P certification system to secure golden time to protect citizens' precious lives and property in case of emergency by classifying and mapping the existing ISMS-P certification system and the Korea Internet & Security Agency's cyber security guide according to the items of security threats.

A Compressed Sensing-Based Signal Detection Technique for Generalized Space Shift Keying Systems (일반화된 공간천이변조 시스템에서 압축센싱기술을 이용한 수신신호 복호 알고리즘)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1557-1564
    • /
    • 2014
  • In this paper, we propose a signal detection technique based on the parallel orthogonal matching pursuit (POMP) is proposed for generalized shift space keying (GSSK) systems, which is a modified version of the orthogonal matching pursuit (OMP) that is widely used as a greedy algorithm for sparse signal recovery. The signal recovery problem in the GSSK systems is similar to that in the compressed sensing (CS). In the proposed POMP technique, multiple indexes which have the maximum correlation between the received signal and the channel matrix are selected at the first iteration, while a single index is selected in the OMP algorithm. Finally, the index yielding the minimum residual between the received signal and the M recovered signals is selected as an estimate of the original transmitted signal. POMP with Quantization (POMP-Q) is also proposed, which combines the POMP technique with the signal quantization at each iteration. The proposed POMP technique induces the computational complexity M times, compared with the OMP, but the performance of the signal recovery significantly outperform the conventional OMP algorithm.

Development of Signal Detection Methods for ECG (Electrocardiogram) based u-Healthcare Systems (심전도기반 u-Healthcare 시스템을 위한 파형추출 방법)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.18-26
    • /
    • 2009
  • In this paper, we proposed multipurpose signal detection methods for ECG (electrocardiogram) based u-healthcare systems. For ECG based u-healthcare system, QRS signal extraction for cardiovascular disease diagnosis is essential. Also, for security and convenience reasons, it is desirable if u-healthcare system support biometric identification directly from user's bio-signal such as ECG for this case. For this, from Lead II signal, we developed QRS signal detection method and also, we developed signal extraction method for biometric identification using Lead II signal which is relatively robust from signal alteration by aging and diseases. For QRS signal detection capability from Lead II signal, ECG signals from MIT-BIH database are used and it showed 99.36% of accuracy and 99.68% of sensitivity. Also, to show the performance of signal extraction capability for biometric diagnosis purpose, Lead III signals are measured after drinking, smoking, or exercise to consider various monitoring conditions and it showed 99.92% of accuracy and 99.97% of sensitivity.

Study on Compressed Sensing of ECG/EMG/EEG Signals for Low Power Wireless Biopotential Signal Monitoring (저전력 무선 생체신호 모니터링을 위한 심전도/근전도/뇌전도의 압축센싱 연구)

  • Lee, Ukjun;Shin, Hyunchol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Compresses sensing (CS) technique is beneficial for reducing power consumption of biopotential acquisition circuits in wireless healthcare system. This paper investigates the maximum possible compress ratio for various biopotential signal when the CS technique is applied. By using the CS technique, we perform the compression and reconstruction of typical electrocardiogram(ECG), electromyogram(EMG), electroencephalogram(EEG) signals. By comparing the original signal and reconstructed signal, we determines the validity of the CS-based signal compression. Raw-biopotential signal is compressed by using a psuedo-random matrix, and the compressed signal is reconstructed by using the Block Sparse Bayesian Learning(BSBL) algorithm. EMG signal, which is the most sparse biopotential signal, the maximum compress ratio is found to be 10, and the ECG'sl maximum compress ratio is found to be 5. EEG signal, which is the least sparse bioptential signal, the maximum compress ratio is found to be 4. The results of this work is useful and instrumental for the design of wireless biopotential signal monitoring circuits.

Wireless Bio-Signal Sensing System Using a Circular Polarized Antenna

  • Kwon Young-Bae;Park Jung-Min;Choe Jung-Hwan;Park Seong-Ook;Ishida Osami
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.132-139
    • /
    • 2005
  • Wireless bio-signal sensing system, which is based on the principle of Doppler radar, can measure a respiration and heart rates with a periodic movement of skin and muscle near the heart. Though the sensing monostatic system using a circulator has been studied, this bistatic system can be improved by using a circular polarized antenna which has a high isolation between transmitter and receiver. In this paper, we measured the bio-signal without the direct contact with the person. The design of each system and experimental results are discussed.

Comparison of two sampling intervals and three sampling intervals VSI charts for monitoring both means and variances

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.997-1006
    • /
    • 2015
  • In industrial quality control, when engineers use VSI control procedure they should consider both required time to signal and switching behaviors together in the case of production process changed. Up to the present, many researchers have studied fixed sampling interval (FSI) chart and variable sampling interval (VSI) chart in the points of average number of samples to signal (ANSS) and average time to signal (ATS). However, ANSS and ATS do not provide any switching information between different sampling intervals of VSI schemes. In this study, performances of two sampling intervals VSI chart and three sampling intervals VSI chart are evaluated and compared. The numerical results show that ANSS and ATS values of two sampling intervals VSI chart and three sampling interval VSI chart are similar regardless the amount of shifts. However, the values of switching behaviors including ANSW are less efficient in three sampling intervals VSI charts than in two sampling intervals VSI chart.

The secure communication in hyper-Chaos

  • Youngchul Bae;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.575-578
    • /
    • 2003
  • In this paper, we introduce a hyper-chaos secure communication method using Hyper-chaos consist of State-Controlled Cellular Neural Network (SC-CNN). A hyper-chaos circuit is created by applying identical n-double scroll with weak coupled method to each cell. Hyper-chaos synchronization was achieved using embedding synchronization between the transmitter and receiver about in SC CNN. And then, we accomplish secure communication by synthesizing the desired information with a hyper-chaos circuit by embedding the information signal to the only one state variable instead of all state variables in the driven-synchronization method. After transmitting the synthesized signal to the identical channel, we confirm secure communication by separating the information signal and the hyper-chaos signal in the receiver.

  • PDF

Noninvasive Life Signal Detecting Systems and Their Analyses

  • Park, Jung-Min;Park, Dong-Hyuk;Park, Seong-Ook
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • Wireless life signal detecting system is implemented with using the mechanism of Doppler Effect. This system can measure the respiration and heart rates with the periodic movement of skin and muscle near the heart. The system is consisted of antenna, RF transmitter, receiver, and display part. We did use two operating frequencies at 1.9 ㎓ and 10 ㎓. Firstly, the link budget about detecting system is analyzed and the signal detected from the system is compared with electrocardiogram(ECG) of monitor which is using for patient monitoring in hospital. Secondly, the detection of vital sign is also performed according to the different distances, and including behind the wall.

A Biological Signal Analysis Workstation for SiMACS (SiMACS에서의 생체신호해석을 위한 Workstation)

  • Kim, Hyung-Jin;Park, Seung-Hun;Woo, Eung-Je
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.60-62
    • /
    • 1994
  • In this paper, we present a signal analysis workstation in which the user can scrutinize and quantify biological signals, observe the effects of various signal processing algorithms on them, and eventually get some interpretation of clinical use. Within the system, the user can also access all the information in the central data base, such as patient personal information, biological signal information, and insert his interpretation results obtained into the data base after his careful observation. The software system is designed in an object-oriented paradigm, and written in C++ as a window-based application program.

  • PDF