• Title/Summary/Keyword: Siegel modular forms

Search Result 10, Processing Time 0.018 seconds

ON SOME RESULTS OF BUMP-CHOIE AND CHOIE-KIM

  • Hundley, Joseph
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.559-581
    • /
    • 2013
  • This paper is motivated by a 2001 paper of Choie and Kim and a 2006 paper of Bump and Choie. The paper of Choie and Kim extends an earlier result of Bol for elliptic modular forms to the setting of Siegel and Jacobi forms. The paper of Bump and Choie provides a representation theoretic interpretation of the phenomenon, and shows how a natural generalization of Choie and Kim's result on Siegel modular forms follows from a natural conjecture regarding ($g$, K)-modules. In this paper, it is shown that the conjecture of Bump and Choie follows from work of Boe. A second proof which is along the lines of the proof given by Bump and Choie in the genus 2 case is also included, as is a similar treatment of the result of Choie and Kim on Jacobi forms.

THE CHIRAL SUPERSTRING SIEGEL FORM IN DEGREE TWO IS A LIFT

  • Poor, Cris;Yuen, David S.
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.293-314
    • /
    • 2012
  • We prove that the Siegel modular form of D'Hoker and Phong that gives the chiral superstring measure in degree two is a lift. This gives a fast algorithm for computing its Fourier coefficients. We prove a general lifting from Jacobi cusp forms of half integral index t/2 over the theta group ${\Gamma}_1$(1, 2) to Siegel modular cusp forms over certain subgroups ${\Gamma}^{para}$(t; 1, 2) of paramodular groups. The theta group lift given here is a modification of the Gritsenko lift.

Survey of the Arithmetic and Geometric Approach to the Schottky Problem

  • Jae-Hyun Yang
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.647-707
    • /
    • 2023
  • In this article, we discuss and survey the recent progress towards the Schottky problem, and make some comments on the relations between the André-Oort conjecture, Okounkov convex bodies, Coleman's conjecture, stable modular forms, Siegel-Jacobi spaces, stable Jacobi forms and the Schottky problem.

THE CUSP STRUCTURE OF THE PARAMODULAR GROUPS FOR DEGREE TWO

  • Poor, Cris;Yuen, David S.
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.445-464
    • /
    • 2013
  • We describe the one-dimensional and zero-dimensional cusps of the Satake compactification for the paramodular groups in degree two for arbitrary levels. We determine the crossings of the one-dimensional cusps. Applications to computing the dimensions of Siegel modular forms are given.

RAY CLASS INVARIANTS IN TERMS OF EXTENDED FORM CLASS GROUPS

  • Yoon, Dong Sung
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.87-95
    • /
    • 2021
  • Let K be an imaginary quadratic field with ��K its ring of integers. For a positive integer N, let K(N) be the ray class field of K modulo N��K, and let ��N be the field of meromorphic modular functions of level N whose Fourier coefficients lie in the Nth cyclotomic field. For each h ∈ ��N, we construct a ray class invariant as its special value in terms of the extended form class group, and show that the invariant satisfies the natural transformation formula via the Artin map in the sense of Siegel and Stark. Finally, we establish an isomorphism between the extended form class group and Gal(K(N)/K) without any restriction on K.