
KYUNGPOOK Math. J. 63(2023), 647-707

https://doi.org/10.5666/KMJ.2023.63.4.647

pISSN 1225-6951 eISSN 0454-8124

© Kyungpook Mathematical Journal

Survey of the Arithmetic and Geometric Approach to the
Schottky Problem

Jae-Hyun Yang
Department of Mathematics, Inha University, Incheon 22212, Republic of Korea
e-mail : jhyang@inha.ac.kr or jhyang8357@gmail.com

Abstract. In this article, we discuss and survey the recent progress towards the Schot-

tky problem, and make some comments on the relations between the André-Oort conjec-

ture, Okounkov convex bodies, Coleman’s conjecture, stable modular forms, Siegel-Jacobi

spaces, stable Jacobi forms and the Schottky problem.

1. Introduction

For a positive integer g, we let

Hg =
{
τ ∈ C(g,g) | τ = tτ, Im τ > 0

}
be the Siegel upper half plane of degree g and let

Sp(2g,R) = {M ∈ R(2g,2g) | tMJgM = Jg}

be the symplectic group of degree g, where F (k,l) denotes the set of all k× l matrices
with entries in a commutative ring F for two positive integers k and l, tM denotes
the transposed matrix of a matrix M and

Jg =

(
0 Ig

−Ig 0

)
.

Then Sp(2g,R) acts on Hg transitively by

(1.1) M · τ = (Aτ +B)(Cτ +D)−1,
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where M =

(
A B
C D

)
∈ Sp(2g,R) and Ω ∈ Hn. Let

Γg = Sp(2g,Z) =
{(

A B
C D

)
∈ Sp(2g,R)

∣∣ A,B,C,D integral

}
be the Siegel modular group of degree g. This group acts on Hg properly discon-
tinuously.

Let Ag := Γg\Hg be the Siegel modular variety of degree g, that is, the moduli
space of g-dimensional principally polarized abelian varieties, and let Mg be the the
moduli space of projective curves of genus g. Then according to Torelli’s theorem,
the Jacobi mapping

(1.2) Tg : Mg −→ Ag

defined by
C 7−→ J(C) := the Jacobian of C

is injective. The Jacobian locus Jg := Tg(Mg) is a (3g − 3)-dimensional subvariety
of Ag

The Schottky problem is to characterize the Jacobian locus or its closure J̄g in
Ag. At first this problem had been investigated from the analytical point of view :
to find explicit equations of Jg (or J̄g) in Ag defined by Siegel modular forms on Hg,

for example, polynomials in the theta constant θ

[
ϵ
δ

]
(τ, 0) (see Definition (2.4)) and

their derivatives. The first result in this direction was due to Friedrich Schottky
[125] who gave the simple and beautiful equation satisfied by the theta constants
of Jacobians of dimension 4. Much later the fact that this equation characterizes
the Jacobian locus J4 was proved by J. Igusa [73] (see also E. Freitag [47] and
Harris-Hulek [68]). Past decades there has been some progress on the characteri-
zation of Jacobians by some mathematicians. Arbarello and De Concini [6] gave a
set of such equations defining J̄g. The Novikov conjecture which states that a theta
function satisfying the Kadomtsev-Petviasvili (briefly, K-P) differential equation is
the theta function of a Jacobian was proved by T. Shiota [129]. Later the proof
of the above Novikov conjecture was simplified by Arbarello and De Concini [7].
Bert van Geeman [53] showed that J̄g is an irreducible component of the subvariety
of ASat

g defined by certain equations. Here ASat
g is the Satake compactification of

Ag. I. Krichever [80] proved that the existence of one trisecant line of the associ-
ated Kummer variety characterizes Jacobian varieties among principally polarized
abelian varieties.

S.-T. Yau and Y. Zhang [177] obtained the interesting results about asymptotic
behaviors of logarithmical canonical line bundles on toroidal compactifications of
the Siegel modular varieties. Working on log-concavity of multiplicities in repre-
sentation theory, A. Okounkov [106, 107] showed that one could associate a convex



Arithmetic and Geometric Approach to the Schottky Problem 649

body to a linear system on a projective variety, and use convex geometry to study
such linear systems. Thereafter R. Lazarsfeld and M. Mustată [81] developed the
theory of Okounkov convex bodies associated to linear series systematically. E.
Freitag [45] introduced the concept of stable modular forms to investigate the ge-
ometry of the Siegel modular varieties. In 2014, using stable modular forms, G.
Codogni and N. I. Shepherd-Barron [24] showed there is no stable Schottky-Siegel
forms. We recall that Schottky-Siegel forms are scalar-valued Siegel modular forms
vanishing on the Jacobian locus. Recently G. Codogni [23] found the ideal of stable
equations of the hyperelliptic locus. About twenty years ago the author [148, 158]
introduced the notion of stable Jacobi forms to try to study the geometry of the uni-
versal abelian varieties. In this paper, we discuss the relations among logarithmical
line bundles on toroidal compactifications, the André-Oort conjecture, Okounkov
convex bodies, Coleman’s conjecture, Siegel-Jacobi spaces, stable Schottky-Siegel
forms, stable Schottky-Jacobi forms and the Schottky problem.

This article is organized as follows. In Section 2, we briefly survey some known
approaches to the Schottky problem and some results so far obtained concerning
the characterization of Jacobians. In Section 3, we briefly describe the results of
Yau and Zhang concerning the behaviors of logarithmical canonical line bundles
on toroidal compactifications of the Siegel modular varieties. In Section 4, we
review some recent progress on the André-Oort conjecture. In Section 5, we review
the theory of Okounkov convex bodies associated to linear series (cf. [20, 81]). In
Section 6, we discuss the relations among logarithmical line bundles on toroidal
compactifications, the André-Oort conjecture, Okounkov convex bodies, Coleman’s
conjecture and the Schottky problem. In the final section we give some remarks
and propose some open problems about the relations among the Schottky problem,
the André-Oort conjecture, Okounkov convex bodies, stable Schottky-Siegel forms,
stable Schottky-Jacobi forms and the geometry of the Siegel-Jacobi space. We
define the notion of stable Schottky-Jacobi forms and the concept of stable Jacobi
equations for the universal hyperelliptic locus. In Appendix A, we survey some
known results about subvarieties of the Siegel modular variety. In Appendix B,
we review recent results concerning an extension of the Torelli map to a toroidal
compactification of the Siegel modular variety. In Appendix C, we describe why
the study of singular modular forms is closely related to that of the geometry of the
Siegel modular variety. In Appendix D, we briefly talk about singular Jacobi forms.
Finally in Appendix E, we review the concept of stable Jacobi forms introduced by
the author and relate the study of stable Jacobi forms to that of the geometry of
the universal abelian variety.

Finally the author would like to mention that he tried to write this article in
another new perspective concerning the Schottky problem different from that of
other mathematicians. The list of references in this article is by no means complete
though we have strived to give as many references as possible. Any inadvertent
omissions of references related to the contents in this paper will be the author’s
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fault.

Notations: We denote by Q, R and C the field of rational numbers, the field of
real numbers and the field of complex numbers respectively. We denote by Z and
Z+ the ring of integers and the set of all positive integers respectively. R+ denotes
the set of all positive real numbers. Z+ and R+ denote the set of all nonnegative
integers and the set of all nonnegative real numbers respectively. The symbol “:=”
means that the expression on the right is the definition of that on the left. For two
positive integers k and l, F (k,l) denotes the set of all k × l matrices with entries in
a commutative ring F . For a square matrix A ∈ F (k,k) of degree k, tr(A) denotes
the trace of A. For any M ∈ F (k,l), tM denotes the transpose of a matrix M .
In denotes the identity matrix of degree n. For A ∈ F (k,l) and B ∈ F (k,k), we set
B[A] = tABA. For a complex matrix A, A denotes the complex conjugate of A. For
A ∈ C(k,l) and B ∈ C(k,k), we use the abbreviation B{A} = tABA. For a number
field F , we denote by AF,f the ring of finite adéles of F.

2. Some Approaches to the Schottky Problem

Before we survey some approaches to the Schottky problem, we provide some
notations and definitions. Most of the materials in this section can be found in
[60]. We refer to [13, 31, 41, 60, 101, 117] for more details and discussions on the
Schottky problem.

In this section, we let g be a fixed positive integer. For a positive integer ℓ, we
define the principal level ℓ subgroup

Γg(ℓ) := {γ ∈ Sp(2g,Z) | γ ≡ I2g (mod ℓ) } .

and define the theta level ℓ subgroup

Γg(ℓ, 2ℓ) :=

{(
A B
C D

)
∈ Γg(ℓ)

∣∣∣ diag( tAB) ≡ diag( tCD) ≡ 0 (mod ℓ)

}
.

We let
Ag(ℓ) := Γg(ℓ)\Hg and Ag(ℓ, 2ℓ) := Γg(ℓ, 2ℓ)\Hg.

Definition 2.1. ([72, pp. 49-50], [100, p. 123], [156, p. 862] or [167, p. 127]) Let ℓ
a positive integer. For any ϵ and δ in 1

ℓZ
g/Zg, we define the theta function with

characteristics ϵ and δ by

(2.1) θ

[
ϵ
δ

]
(τ, z) :=

∑
N∈Zg

eπi{(N+ϵ) τ t(N+ϵ)+ 2 (N+ϵ) t(z+δ)}, (τ, z) ∈ Hg × Cg.

The Riemann theta function θ(τ, z) is defined to be

(2.2) θ(τ, z) := θ

[
0
0

]
(τ, z), (τ, z) ∈ Hg × Cg.
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For each τ ∈ Hg, we have the transformation behavior

(2.3) θ(τ, z + aτ + b) := e−πi(aτ
ta+2 atz)θ(τ, z) for all a, b ∈ Zg.

The function

(2.4) θ

[
ϵ
δ

]
(τ) := θ

[
ϵ
δ

]
(τ, 0), τ ∈ Hg

is called the theta constant of order ℓ. It is known that the theta constants θ

[
ϵ
δ

]
(τ)

of order ℓ are Siegel modular forms of weight 1
2 for Γg(ℓ, 2ℓ) [100, p. 200].

For a fixed τ ∈ Hg, we let Λτ := Zgτ + Zg be the lattice in Cg. According to
the formula (2.3), the zero locus {z ∈ Cg | θ(τ, z) = 0 } is invariant under the action
of the lattice Λτ on Cg, and thus descends to a well-defined subvariety Θτ ⊂ Aτ :=
Cg/Λτ . In fact Aτ is a principally polarized abelian variety with ample divisor Θτ .

Definition 2.2. For ϵ ∈ 1
2Z

g/Zg the theta function of the second order with char-
acteristic ϵ is defined to be

(2.5) Θ[ϵ](τ, z) := θ

[
2ϵ
0

]
(2τ, 2z), (τ, z) ∈ Hg × Cg.

We define the theta constant of the second order to be

(2.6) Θ[ϵ](τ) := θ

[
2ϵ
0

]
(2τ, 0) = Θ[ϵ](τ, 0), τ ∈ Hg.

Then we see that Θ[ϵ](τ) is a Siegel modular form of weight 1
2 for Γg(2, 4).

We have the following results.

Theorem 2.1. (Riemann’s bilinear addition formula) [72, p. 139]

(2.7)

(
θ

[
ϵ
δ

]
(τ, z)

)2

=
∑

σ∈ 1
2Zg/Zg

(−1)4
tσδΘ[σ + ϵ](τ, 0) ·Θ[σ](τ, z).

Theorem 2.2. For ℓ ≥ 2, the map

(2.8) Φℓ : Ag(2ℓ, 4ℓ) −→ PN (C), N := ℓ2g − 1

defined by

Φℓ(τ) :=

{
θ

[
ϵ
δ

]
(τ)
∣∣∣ ϵ, δ ∈ 1

ℓ
Zg/Zg

}
is an embedding.
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Proof. See Igusa [72] for ℓ = 4n2, and Salvati Manni [120] for ℓ ≥ 2. 2

Remark 2.1. We consider the theta map

(2.9) Th : Ag(2, 4) −→ P2g−1(C)

defined by

Th(τ) :=

{
Θ[ϵ](τ)

∣∣ ϵ ∈ 1

2
Zg/Zg

}
.

We observe that according to Theorem 2.1, Φ2(τ) can be recovered uniquely up to
signs from Θ(τ). Since Φ2 is injective on Ag(4, 8), the theta map Th is finite-to-one
on Ag(2, 4). In fact, it is known that the theta map Th is generically injective, and
it is conjectured that Th is an embedding.

Now we briefly survey some approaches to the Schottky problem. As mentioned
before, most of the following materials in this section comes from a good survey
paper [60].

(A) Classical Approach

For τ ∈ Hg and a positive integer ℓ ∈ Zg,

Aτ [ℓ] :=

{
τϵ+ δ ∈ Aτ | ϵ, δ ∈

1

ℓ
Zg/Zg

}
denotes the subgroup of Aτ consisting of torsion points of order ℓ. For m = τϵ+δ ∈
Aτ [ℓ], we briefly write

(2.10) θm(τ, z) := θ

[
ϵ
δ

]
(τ, z).

We define the Igusa modular form to be

(2.11) Fg(τ) := 2g
∑

m∈Aτ [2]

θ16m (τ)−

 ∑
m∈Aτ [2]

θ8m(τ)

2

, τ ∈ Hg.

It was proved that Fg(τ) is a Siegel modular form of weight 8 for the Siegel modular
group Γg such that when rewritten in terms of theta constants of the second order
using Theorem 2.1,

(Fg–1) Fg ≡ 0 for g = 1, 2 ;

(Fg–2) F3 is the defining equation for Th(J3(2, 4)) = Th(A3(2, 4)) ⊂ P7(C) ;
(Fg–3) F4 is the defining equation for Th(J4(2, 4)) ⊂ Th(A4(2, 4)) ⊂ P15(C).

For more detail, we refer to [47, 73, 125] for the case g = 4 and refer to [117]
for the case g = 5. For g ≥ 5, no similar solution is known or has been proposed.
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Theorem 2.3. If g ≥ 5, then Fg does not vanish identically on Jg. In fact, the zero
locus of F5 on J5 is the locus of trigonal curves.

The above theorem was proved by Grushevsky and Salvati Manni [64].

(B) The Schottky-Jung Approach

Definition 2.3. For an étale connected double cover C̃ −→ C of a curve C ∈ Mg

(such a curve is given by a two-torsion point η(̸= 0) ∈ J(C)[2]) we define the Prym
variety to

Prym(C̃ −→ C) := Prym(C, η) := Ker0(J(C̃) −→ J(C)) ∈ Ag−1,

where Ker0 denotes the connected component of 0 in the kernel and the map
J(C̃) −→ J(C) is the norm map corresponding to the cover C̃ −→ C. We de-
note by Pg−1 ⊂ Ag−1 the locus of Pryms of all étale double covers of curves in Mg.
The problem of describing Pg−1 is called the Prym-Schottky problem.

Remark 2.2. The restriction of the principal polarization ΘJ(C̃) to the Prym
gives twice the principal polarization. However this polarization admits a canonical
square root, which thus gives a natural principal polarization on the Prym.

Theorem 2.4. (Schottky-Jung proportionality) Let τ be the period matrix of a curve

C of genus g and let τ∗ be the period matrix of the Prym for

[
0 0 · · · 0
1 0 · · · 0

]
. Then

for any ϵ, δ ∈ 1
2Z

g−1/Zg−1 the theta constants of J(C) and of the Prym are related
by

(2.12)

(
θ

[
ϵ
δ

]
(τ∗)

)2

= C θ

[
0 ϵ
0 δ

]
(τ) · θ

[
0 ϵ
1 δ

]
(τ).

Here the constant C is independent of ϵ, δ.

Proof. See Schottky-Jung [126] and also Farkas [41] for a rigorous proof. 2

Definition 2.4. (The Schottky-Jung locus [60]). Let Ig−1 be the defining ideal for

the image Th(Ag−1(2, 4)) ⊂ P2g−1−1 (see Remark 2.1). For any equation F ∈ Ig−1,
we let Fη be the polynomial equation on P2g−1 obtained by using the Schottky-
Jung proportionality to substitute an appropriate polynomial of degree 2 in terms
of theta constants of τ for the square of any theta constant of τ∗. Let Sη

g be
the ideal obtained from Ig−1 in this way. We define the big Schottky-Jung locus
Sηg(2, 4) ⊂ Ag(2, 4) to be the zero locus of Sη

g . It is not known that Ig ⊂ Sη
g and

thus we define Sηg(2, 4) within Ag(2, 4), and not as a subvariety of the projective

space P2g−1. We now define the small Schottky-Jung locus to be

(2.13) Sg(2, 4) :=
⋂
η

Sηg(2, 4),
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where η runs over the set 1
2Z

2g/Z2g\{0}.We note that the action of Γg permutes the
different η and the ideals Sη

g . Therefore the ideal defining Sg(2, 4) is Γg-invariant,
and the locus Sg(2, 4) is a preimage of some Sg ⊂ Ag under the level cover.

Theorem 2.5. (a) The Jacobian locus Jg is an irreducible component of the small
Schottky-Jung locus Sg.
(b) Jg(2, 4) is an irreducible component of the big Schottky-Jung locus Sηg(2, 4) for
any η.

Proof. The statement (a) was proved by van Geeman [53] and the statement (b)
was proved by Donagi [31]. 2

Donagi [32] conjectured the following.

Conjecture 2.1. The small Schottky-Jung locus is equal to the Jacobian locus, that
is, Sg = Jg.

(C) The Andreotti-Mayer Approach

We let SingΘ be the singularity set of the theta divisor Θ for a principally
polarized abelian variety (A,Θ).

Theorem 2.6. For a non-hyperelliptic curve C of genus g, dim(SingΘJ(C)) = g−4,
and for a hyperelliptic curve C, dim(SingΘJ(C)) = g− 3. For a generic principally
polarized abelian variety, the theta divisor is smooth.

Proof. The proof was given by Andreotti and Mayer [5]. 2

Definition 2.5. We define the k-th Andreotti-Mayler locus to be

Nk, g := {(A,Θ) ∈ Ag | dimSingΘ ≥ k}.

Theorem 2.7. Ng−2,g = Adec
g . Here

Adec
g :=

(
g−1⋃
k=1

Ak ×Ag−k

)
⊂ Ag

denotes the locus of decomposable ppavs (product of lower-dimensional ppavs) of
dimension g.

Proof. The proof was given by Ein and Lazasfeld [38]. 2

Theorem 2.8. Jg is an irreducible component of Ng−4,g, and the locus of hyperel-
liptic Jacobians Hypg is an irreducible component of Ng−3,g.

Proof. The proof was given by Andreotti and Mayer [5]. 2
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Theorem 2.9. The Prym locus Pg is an irreducible component of Ng−6,g.

Proof. The proof was given by Debarre [26]. 2

Theorem 2.10. The locus of Jacobians of curves of genus 4 with a vanishing theta-
null is equal to the locus of 4-dimensional principally polarized abelian varieties for
which the double point singularity of the theta divisor is not ordinary (i.e., the
tangent cone does not have maximal rank).

Proof. See Grushevsky-Salvati Manni [63] and Smith-Varley [132]. 2

Problem. Can it happen that Nk,g = Nk+1,g for some k, g?

(D) The Approach via the K-P Equation

In his study of solutins of nonlinear equations of Korteveg de Vrie type, I.
Krichever [79] proved the following fact :

Theorem 2.11. Let τ be the period matrix of a curve C of genus g and let θ(z)
(cf. (2.2)) be the Riemann theta function of the Jacobian J(C). Then there exist
three vectors W1,W2,W3 in Cg with W1 ̸= 0 such that, for every z ∈ Cg, the
function

(2.14) u(x, y, z; t) :=
∂2

∂x2
log θ(xW1 + yW2 + tW3 + z)

satisfies the so-called Kadomstev-Petriashvili equation (briefly the K-P equation)

(2.15) 3uyy = (ut − 3uux − 2uxxx)x .

S. P. Novikov conjectured that τ ∈ Hg is the period matrix of a curve if and only
if the Riemann theta function corresponding to τ ∈ Hg satisfies the K-P equation in
the sense we just explained in Theorem 2.11. Shiota [129] proved that the Novikov
conjecture is true, following the work of Mulase [96] and Mumford [98]. Arbarello
and De Concini [7] gave another proof of the Novikov conjecture.

(E) The Approach via Geometry of the Kummer Variety

Definition 2.6. The map is the embedding given by

(2.16) Kum : Aτ/±1 −→ P2g−1(C), Kum(z) =

{
Θ[ϵ](τ, z)

∣∣ ϵ ∈ 1

2
Zg/Zg

}
.

We call the image of Kum the Kummer variety. Note that the involution ±1 has 22g

fixed points on Aτ which are precisely Aτ [2], and thus the Kummer variety singular
at their images in P2g−1(C).
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Theorem 2.12. For any points p1, p2, p3 of a curve of genus g, the following three
points on the Kummer variety are collinear :

(2.17) Kum(p+ p1 − p2 − p3), Kum(p+ p2 − p1 − p3), Kum(p+ p3 − p1 − p2).

Proof. See Fay [42] and Gunning [65]. 2

Theorem 2.13. For any curve C ∈ Mg, for any 1 ≤ k ≤ g and for any
p1, · · · , pk+2, q1, · · · , qk ∈ C the k + 2 points of the Kummer variety

(2.18) Kum

(
2pj +

k∑
i=1

qi −
k=2∑
i=1

pi

)
, j = 1, · · · , k + 2

are linearly dependent.

Proof. See Gunning [66]. 2

I. Krichever [80] gave a complete proof of a conjecture of Welters concerning
a condition for an indecomposable principally polarized abelian variety to be the
Jacobian of a curve :

Theorem 2.14. Let Aind
g := Ag\Adec

g be the locus of indecomposable ppavs of

dimension g. For a ppav A ∈ Aind
g , if Kum(A) ⊂ P2g−1 has one of the following

(W1) a trisecant line
(W2) a line tangent to it at one point, and intersecting it another point

(this is a semi-degenerate trisecant, when two points of secancy coincides)
(W3) a flex line (this is a most degenerate trisecant when all three points of

secancy coincide)

such that none of the points of intersection of this line with the Kummer variety
are A[2] (where Kum(A) is singular), then A ∈ Jg.

For the Prym-Schottky problem, it will be natural whether the Kummer va-
rieties of Pryms have any special geometric properties. Indeed, Beauville-Debarre
[14] and Fay [43] obtained the following.

Theorem 2.15. Let C ∈ Mg. For any p, p1, p2, p3 ∈ C̃ −→ Prym(C̃ −→ C) on
the Abel-Prym curve the following four points of the Kummer variety

Kum(p+ p1 + p2 + p3), Kum(p+ p1 − p2 − p3),

Kum(p+ p2 − p1 − p3), Kum(p+ p3 − p1 − p2)

lie on a 2-plane in P2g−1(C).

A suitable analog of the trisecant conjecture was found for Pryms using ideas of
integrable systems by Grushevsky and Krichever [62]. They proved the following.
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Theorem 2.16. If for some A ∈ Aind
g and some p, p1, p2, p3 ∈ A the quadrisecant

condition in Theorem 2.15 holds, and moreover there exists another quadrisecant
given by Theorem 2.15 with p replaced by −p, then A ∈ P̃g.

(F) The Approach via the Γ00 Conjecture

Definition 2.7. Let (A,Θ) ∈ Ag. The linear system Γ00 ⊂ |2Θ| is defined to consist
of those sections that vanish to order at least 4 at the origin :

(2.19) Γ00 := {f ∈ H0(A, 2Θ) | mult0f ≥ 4}.

We define the base locus

FA := {x ∈ A | s(x) = 0 for all s ∈ Γ00}.

Theorem 2.17. For any g ≥ 5 and any C ∈ Mg, we have on the Jacobian J(C)
of C the equality

FJ(C) = C − C = {x− y ∈ J(C) | x, y ∈ C}.

Proof. The above theorem was proved by Welters [143] set theoretically and also
by Izadi scheme-theoretically. Originally Theorem 2.17 was conjectured by van
Geeman and van der Geer [54]. 2

van Geeman and van der Geer [54] conjectured the following.

Γ00 Conjecture. Let (A,Θ) ∈ Aind
g . If FA ̸= 0, then A ∈ Jg.

Definition 2.8. Let (A,Θ) ∈ Ag. For any curve Γ on A and any point x ∈ A, we
define

ε(A,Γ, x) :=
Θ.Γ

multxΓ
, ε(A, x) := inf

Γ∋x
ε(A,Γ, x).

We define the Seshadri constant of (A,Θ) by

ε(A) := ε(A,Θ) := inf
x∈A

ε(A, x).

Theorem 2.18. If the Γ00 conjecture holds, hyperelliptic Jacobians are character-
ized by the value of their Seshadri constants.

Proof. See O. Debarre [28]. 2

Theorem 2.19. If some A ∈ Aind
g , the linear dependence

(2.20) Θ[ϵ](τ, z) = cΘ[ϵ](τ, 0) +
∑

1≤a≤b≤g

cab
∂Θ[ϵ](τ, 0)

∂τab

for some c, cab ∈ C (1 ≤ a ≤ b ≤ g) and for all ϵ ∈ 1
2Z

g/Zg holds with rank(cab) = 1,
then A ∈ Jg.
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Proof. See S. Grushevsky [59]. 2

(G) Subvarieties of a ppav: Minimal Cohomology Classes

The existence of some special subvarieties of a ppav (A,Θ) ∈ Ag gives a criterion
that A is the Jacobian of a curve. We start by observing that for the Jacobian J(C)
of a curve C ∈ Mg we can map the symmetric product Symd(C) (1 ≤ d < g) to

J(C) = Picg−1(C) by fixing a divisor D ∈ Picg−1−d(C) and mapping

(2.21) Φ(d) : Sym
d(C) −→ J(C), (p1, · · · , pd) 7→ D +

d∑
i=1

pi.

The image W d(C) of the map Φ(d) is independent of D up to translation, and we
can compute its cohomology class

[
W d(C)

]
=

[Θ]d

(g − d)!
∈ H2g−2d(J(C)),

where [Θ] is the cohomology class of the polarization of J(C). One can show that the
cohomology class is indivisible in cohomology with Z-coefficients, and we thus call
this class minimal. We note thatW 1(C) ≃ C. These subvarietiesW d(C) (1 ≤ d < g)
are very special.

We have the following criterion.

Theorem 2.20. A ppav (A,Θ) ∈ Ag is a Jacobian if and only if there exists a

curve C ⊂ A with [C] = [Θ]g−1

(g−1)! ∈ H2g−2(J(C)) in which case (A,Θ) = J(C).

Proof. See Matsusaka [92] and Ran [116]. 2

Debarre [27] proved that Jg is an irreducible component of the locus of ppavs
for which there is a subvariety of the minimal cohomology class. He conjectured
the following.

Conjecture 2.2. If a ppav (A,Θ) ∈ Ag has a d-dimensional subvariety of minimal
class, then it is either the Jacobian of a curve or a five dimensional intermediate
Jacobian of a cubic threefold.

This approach to the Schottky problem gives a complete geometric solution
to the weaker version of the problem : determining whether a given ppav is the
Jacobian of a given curve.

3. Logarithmical Canonical Line Bundles on Toroidal Compactifications
of the Siegel Modular Varieties

In this section, we review the interesting results obtained by S.-T. Yau and Y.
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Zhang [177] concerning the asymptotic behaviors of the logarithmical canonical line
bundle on a toroidal compactification of the Siegel modular variety.

Let Γ be a neat arithmetic subgroup of Γg. Let Ag,Γ := Γ\Hg and Ag,Γ be the
toroidal compactification of Ag,Γ constructed by a GL(g,Z)-admissible family of
polyhedral decompositions ΣF0

of the cones. Here F0 denotes the standard minimal
cusps of Hg. Ag,Γ is an algebraic space, but a projective variety in general. Y.-S.
Tai proved that if ΣΓ

tor is projective (see [9, Chapter IV, Corollary 2.3, p. 200]), then
Ag,Γ is a projective variety. It is known that Ag,Γ is the unique Hausdorff analytic
variety containing Ag,Γ as an open dense subset (cf. [9]).

Assume the boundary divisor D∞,Γ:=Ag,Γ\Ag,Γ is simple normal crossing. We
put N = g(g + 1)/2. For each irreducible component Di of D∞,Γ =

⋃
j Dj , let

si a global section of the line bundle [Di] defining Di. Let σmax be an arbitrary
top-dimensional cone in ΣF0

and renumber all components D′is of D∞,Γ such that
D1, · · · , DN correspond to the edges of σmax with marking order. Yau and Zhang
[177, Theorem 3.2] showed that the volume form Φg,Γ on Ag,Γ may be written by

Φg,Γ =
2N−g VolΓ(σmax)

2 dVg(∏N
j=1 ∥sj∥2

)
F g+1
σmax(log ∥s1∥1, · · · , log ∥sN∥N )

,

where dVg is a continuous volume form on a partial compactification Uσmax
of Ag,Γ

with Ag,Γ ⊂ Uσmax
⊂ Ag,Γ, and each ∥ · ∥j is a suitable Hermitian metric of the

line bundle [Dj ] on Ag,Γ (1 ≤ j ≤ N) and Fσmax ∈ Z[x1, · · · , xN ] is a homogeneous
polynomial of degree g. Moreover the coefficients of Fσmax

depends only on both
Γ and σmax with marking order of edges. Using the above volume form formula
they showed that the unique invariant Kähler-Einstein metric on Ag,Γ endows some
restraint combinatorial conditions for all smooth toroidal compactifications of Ag,Γ.

Let E1, · · · , Ed be any different irreducible components of the boundary divisor
D∞,Γ such that

⋂d
k=1Ek ̸= ∅. Let Kg,Γ be the canonical line bundle on Ag,Γ. Yau

and Zhang [177] also proved the following facts (a) and (b):

(a) Let i1, · · · , id ∈ Z+. If d ≥ g − 1 and N −
∑d

k=1 ik > 2 (or if d ≥ g and

N −
∑d

k=1 ik = 1),
then we have

(Kg,Γ +D∞,Γ)
N−

∑d
k=1 ik · Ei1

1 · · ·Eid
d = 0.

(b) Kg,Γ +D∞,Γ is not ample on Ag,Γ.

They also showed that if d < g − 1, then the intersection number

(Kg,Γ +D∞,Γ)
N−d · E1 · · ·Ed

can be expressed explicitly using the above volume form formula. The proofs of (a)
and (b) can be found in [177, Theorem 4.15].
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4. Brief Review on the André-Oort Conjecture

In this section we review recent progress on the André-Oort conjecture quite
briefly.

Definition 4.1. Let (G,X) be a Shimura datum and let K be a compact open
subgroup of G(Af ). We let

ShK(G,X) := G(Q)\X ×G(Af )/K

be the Shimura variety associated to (G,X). An algebraic subvariety Z of the
Shimura variety ShK(G,X) is said to be weakly special if there exist a Shimura
sub-datum (H,XH) of (G,X), and a decomposition

(Had, Xad
H ) = (H1, X1)× (H2, X2)

and y2 ∈ X2 such that Z is the image of X1×{y2} in ShK(G,X). Here (Had, Xad
H )

denotes the adjoint Shimura datum associated to (G,X) and (Hi, Xi) (i = 1, 2) are
Shimura data. In this definition, a weakly special subvariety is said to be special if
it contains a special point and y2 is special.

André [4] and Oort [108] made conjectures analogous to the Manin-Mumford
conjecture where the ambient variety is a Shimura variety (the latter partially moti-
vated by a conjecture of Coleman [25]). A combination of these has become known
as the André-Oort conjecture (briefly the A-O conjecture).

A-O Conjecture. Let S be a Shimura variety and let Σ be a set of special points
in S. Then every irreducible component of the Zariski closure of Σ is a special
subvariety.

Definition 4.2. [111, 112] A pre-structure is a sequence Σ = (Σn : n ≥ 1) where
each Σn is a collection of subsets of Rn. A pre-structure Σ is called a structure over
the real field if, for all n,m ≥ 1 with m ≤ n, the following conditions are satisfied:

(1) Σn is a Boolean algebra (under the usual set-theoretic operations);
(2) Σn contains every semi-algebraic subset of Rn;
(3) if A ∈ Σm and B ∈ Σn, then A×B ∈ Σm+n;
(4) if n ≥ m and A ∈ Σn, then πn,m(A) ∈ Σm, where πn,m : Rn −→ Rm is a

coordinate
projection on the first m coordinates.

If Σ is a structure, and, in addition,

(5) the boundary of every set in Σ1 is finite,

then Σ is called an o-minimal structure over the real field.

If Σ is a structure and Z ⊂ Rn, then we say that Z is definable in Σ if Z ∈ Σn.
A function f : A −→ B is definable in a structure Σ if its graph is definable, in
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which case the domain A of f and image f(A) are also definable by the definition.
If A, · · · , f, · · · are sets or functions, then we denote by RA,··· ,f,··· the smallest
structure containing A, · · · , f, · · · . By a definable family of sets we mean a definable
subset Z ⊂ Rn×Rm which we view as a family of fibres Zy ⊂ Rn as y varies over the
projection of Z onto Rm which is definable, along with all the fibres Zy. A family
of functions is said to be definable if the family of their graphs is. A definable set
usually means a definable set in some o-minimal structure over the real field.

Remark 4.1. The notion of a o-minimal structure grew out of work van den Dries
[33, 34] on Tarski’s problem concerning the decidability of the real ordered field with
the exponential function, and was studied in the more general context of linearly
ordered structures by Pillay and Steinhorn [115], to whom the term “o-minimal”
(“order-minimal”) is due.

In 2011 Pila gave a unconditional proof of the A-O conjecture for arbitrary
products of modular curves using the theory of o-minimality.

Theorem 4.1. Let

X = Y1 × · · · × Yn × E1 × · · · × Em ×Gℓ
m,

where n,m, ℓ ≥ 0, Yi = Γ(i)\H1(1 ≤ i ≤ n) are modular curves corresponding to
congruence subgroups Γ(i) of SL(2,Z) and Ej (1 ≤ j ≤ m) are elliptic curves defined

over Q and Gm is the multiplicative group. Suppose V is a subset of X. Then V
contains only a finite number of maximal special subvarieties.

Proof. See Pila [111, Theorem 1.1]. 2

In 2013 Peterzil and Starchenko proved the following theorem using the theory
of o-minimality.

Theorem 4.2. The restriction of the uniformizing map π : Hg −→ Ag to the
classical fundamental domain for the Siegel modular group Sp(2g,Z) is definable.

Proof. See Peterzil and Starchenko [109, 110]. 2

In 2014 Pila and Tsimerman gave a conditional proof of the A-O conjecture for
the Siegel modular variety Ag.

Theorem 4.3. If g ≤ 6, then the A-O conjecture holds for Ag. If g ≥ 7, the
A-O conjecture holds for Ag under the assumption of the Generalized Riemann
Hypothesis (GRH) for CM fields.

Proof. See Pila-Tsimerman [113, 114]. 2

Quite recently using Galois-theoretic techniques and geometric properties of
Hecke correpondences, Klingler and Yafaev proved the A-O conjecture for a general
Shimura variety, and independently using Galois-theoretic and ergodic techniques
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Ullmo and Yafaev proved the A-O conjecture for a general Shimura variety, under
the assumption of the GRH for CM fields or another suitable assumption. The
explicit statement is given as follows.

Theorem 4.4. Let (G,X) be a Shimura datum and K a compact open subgroup
of G(Af ). Let Σ be a set of special points in ShK(G,X). We make one of the two
following assumptions :

(1) Assume the GRH for CM fields.

(2) Assume that there exists a faithful representation G ↪→ GLn such that with
respect to this representation, the Mumford-Tate group MT (s) lie in one GLn(Q)-
conjugacy class as s ranges through Σ. Then every irreducible component of Σ in
ShK(G,X) is a special subvariety.

Proof. See Klingler-Yafaev [76] and Ullmo-Yafaev [136]. 2

Remark 4.2. We refer to [112] for the theory of o-minimality and the A-O conjec-
ture. We also refer to [52] for the A-O conjecture for mixed Shimura varieties.

5. Okounkov Bodies Associated to Divisors

In this section, we briefly review the theory of Okounkov convex bodies associ-
ated to pseudoeffective divisors on a smooth projective variety. For more details of
this theory, we refer to [20, 81].

Let X be a smooth projective variety of dimension d. We fix an admissible flag
Y• on X

Y• : X = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yd−1 ⊃ Yd = {x},

where each Yk is a subvariety of X of codimension k which is nonsingular at x. We
let Z+ denote the set of all non-negative integers. We first assume that D is a big
Cartier divisor on X. For a section s ∈ H0(X,OX(D))\{0}, we define the function

ν(s) = νY•(s) := (ν1(s), · · · , νd(s)) ∈ Zd
+

as follows:

First we set ν1 = ν1(s) := ordY1
(s). Using a local equation f1 for Y1 in X, we

define naturally a section

s′1 = s⊗ f−ν1
1 ∈ H0(X,OX(D − ν1Y1))

that does not vanish along Y1, its restriction s
′
1|Y1

defines a nonzero section

s1 := s′1|Y1 ∈ H0(Y1,OY1(D − ν1Y1)).

We now take
ν2(s) := ordY2(s1).
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and continue in this manner to define the remaining νi(s).

Next we define

vect(|D|) = Im
(
νY• : (H0(X,OX(D))− {0}) −→ Zd

)
be the set of valuation vectors of non-zero sections of OX(D). Then we finally set

(5.1) ∆(D) := ∆Y•(D) = closed convex hull

 ⋃
m≥1

1

m
· vect(|mD|)

 .

Therefore ∆(D) is a convex body in Rd that is called the Okounkov body of D with
respect to the fixed flag Y•. We refer to [81, §1.2] for some properties and examples
of ∆(D).

We recall that a graded linear series W•(D) = {Wm(D)}m≥0 associated to D
consists of subspaces

Wm :=Wm(D) ⊆ H0(X,OX(mD)), W0 = C

satisfying the inclusion

Wk ·Wl ⊆Wk+l for all k, l ≥ 0.

Here the product on the left denotes the image of Wk⊗Wl under the multiplication
map H0(X,OX(kD))⊗H0(X,OX(lD)) −→ H0(X,OX((k + l)D)).

Definition 5.1. ([81, Definition 1.16]) Let W• be a graded linear series on X
belonging to a divisor D. The graded semigroup of W• is defined to be

Γ(W•) := ΓY•(W•) = {(νY•(s),m) | 0 ̸= s ∈Wm, m ≥ 0} ⊆ Zd
+ × Z+ ⊆ Zd+1.

Under the above notations, we associate the convex body ∆Y•(W•) of a graded
linear series W• with respect to Y• on X as follows:

(5.2) ∆Y•(W•) :=
∑

(Γ(W•)) ∩
(
Rd

+ × {1}
)
,

where R+ denotes the set of all non-negative real numbers and
∑

(Γ(W•)) denotes
the closure of the convex cone in Rd

+ × R+ spanned by Γ(W•). ∆Y•(W•) is called
the Okounkov body of W• with respect to Y•. If W• is a complete graded linear
series, that is, Wm = H0(X,O(mD)) for each m, then we define

(5.3) ∆Y•(D) := ∆Y•(W•).

Remark 5.1. ∆Y•(D) depends on the choice of an admissible flag Y•. By the
homogeneity of ∆Y•(D) (see [81, Proposition 4.13]), we can extend the construction
of ∆Y•(D) to Q-divisors D and even to R-divisors using the continuity of ∆Y•(D).
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Definition 5.2. ([81, Definition 2.5 and 2.9])
(I) We say that a graded linear series W• satisfies Condition (B) if Wm ̸= 0 for all

m≫ 0, and for all sufficiently large m, the rational map ϕm : X −− > P(Wm)
defined by |Wm| is birational on its image.

(II) We say that a graded linear series W• satisfies Condition (C) if
(1) for anym≫ 0, there exists an effective divisor Fm such that Am := mD−Fm

is ample, and
(2) for all sufficiently large t, we have

H0(X,OX(tAm)) ⊆Wtm ⊆ H0(X,OX(tmAm)).

If W• is complete, that is, Wm = H0(X,OX(mAm)) for all m ≥ 0 and D is big,
then it satisfies Condition (C).

Lazarsfeld and Mustată [81] proved the following.

Theorem 5.1. Let X be a smooth projective variety of dimension d. Suppose that
a graded linear series W• satisfies Condition (B) or Condition (C). Then for any
admissible flag Y• on X, we have

dim ∆Y•(W•) = dimX = d

and

VolRn(∆Y•(W•)) =
1

d!
VolX(W•),

where

VolX(W•) := lim
n−→∞

dimWm

md/d!
.

Proof. See [81, Theorem 2.13]. 2

Remark 5.2. It is known by Lazarsfeld and Mustată ([81, Proposition 4.1]) that
for a fixed admissible flag Y• on X, if D is big, then ∆Y•(D) depends only on the
numerical class of D. If D is not big, then it is not true (cf. [20, Remark 3.13]).

Definition 5.3. For a divisor D on X, we let

N(D) :=
{
m ∈ Z+ | |⌊mD⌋| ≠ ∅

}
.

For m ∈ N(D), we let
ΦmD : X −−− > Pdim |⌊mD⌋|

be the rational map defined by the linear system |⌊mD⌋|. We define the Iitaka
dimension of D as the following value

κ(D) :=

{
max{dim Im(ΦmD) | m ∈ N(D)} if N(D) ̸= ∅

−∞ if N(D) = ∅.
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Definition 5.4. Let D be a divisor on X such that κ(D) ≥ 0. A subset U of X is
called a Nakayama subvariety of D if κ(D) = dimD and the natural map

H0(X,OX(⌊mD⌋)) −→ H0(U,OU (⌊mD|U⌋))

is injective for every non-negative integer m.

Definition 5.5. [20, Definition 3.8] Let D be a divisor on X such that κ(D) ≥ 0.
The valuative Okounkov body ∆val

Y•
(D) associated to D is defined to be

∆val
Y•

(D) := ∆Y•(D) ⊂ Rn, n = dimX.

For a divisor D with κ(D) = −∞, we define ∆val
Y•

(D) := ∅.

Remark 5.3. If D is big, then ∆val
Y•

(D) coincides with ∆Y•(D) for any admissible
flag Y• on X.

Recently Choi, Hyun, Park and Won [20] showed the following.

Theorem 5.2. Let D be a divisor with κ(D) ≥ 0 on a smooth projective variety X
of dimension n. Fix an admissible flag Y• containing a Nakayama subvariety U of
D such that Yn = {x} is a general point. Then we have

dim ∆val
Y•

(D) = κ(D)

and

VolRκ(D)(∆val
Y•

(D)) =
1

κ(D)!
VolX|U (D).

Proof. See [20, Theorem 3.12]. 2

Definition 5.6. [20, Definition 3.17] Let D be a pseudo-effective divisor on a pro-
jective variety X of dimension n. The limiting Okounkov body ∆lim

Y•
(D) of D with

respect to an admissible flag Y• is defined to be

∆lim
Y•

(D) := lim
ε→0+

∆Y•(D + εA) ⊂ Rn,

where A is any ample divisor on X. If D is not a pseudo-effective divisor, then we
define ∆lim

Y•
(D) := ∅.

Definition 5.7. [20, Definition 2.11] Let D be a divisor on a projective variety X
of dimension d. We defne the numerical Iitaka dimension κν(D) by

κν(D) := max

{
k ∈ Z+

∣∣ lim sup
m→∞

h0(X,OX(|mD|+A))

mk
> 0

}
for a fixed ample Cartier divisor A if h0(X,OX(|mD|+A)) ̸= ∅ for infinitely many
m > 0, and we define κν(D) = −∞ otherwise.
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Let D be a pseudo-effective Cartier divisor on a projective variety X of dimen-
sion n. Let V ⊆ X be a positive volume subvariety of D. Fix an admissible flag V•
on V

V• : V = V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vn−1 ⊃ Vn = {x}.

let A be an ample Catier divisor on X. For each positive integer k, we consider the
restricted graded linear series W k

• :=W•(kD +A|V ) of kD +A along V given by

Wm(kD +A|V ) = H0(X|V,m(kD +A)) for m ≥ 0.

We define the restricted limiting Okounkov body of a Cartier divisor D with respect
to a positive volume subvariety V of D as

∆lim
V•

(D) := lim
k→∞

1

k
∆V•(W

k
• ) ⊆ Rκν(D).

By the continuity, we can extend this definition for any pseudo-effective R-divisor.

Definition 5.8. Let D be a pseudo-effective divisor on a projective variety X of
dimension n with its positive volume subvariety V ⊆ X. We define the restricted
limiting Okounkov body ∆lim

V•
(D) of D with respect to an admissible flag V• to be a

closed convex subset

∆lim
V•

(D) := lim
ε→0+

∆V•(D + εA) ⊆ Rκν(D) ↪→ Rn,

where A is any ample divisor on X. If D is not a pseudo-effective divisor, then we
define ∆lim

V•
(D) := ∅.

Recently Choi, Hyun, Park and Won [20] proved the following.

Theorem 5.3. Let D be a pseudo-effective divisor on a projective variety X. Fix a
positive volume subvariety V ⊆ X of D (see [20, Definition 2.13]). For an admissible
flag V• of V , we have

dim ∆lim
V•

(D) = κν(D)

and

VolRκν (D)(∆lim
V•

(D)) =
1

κν(D)!
Vol+X|V (D).

Here Vol+X|V (D) denotes the augmented restricted volume of D along V (see [20,

Definition 2.2]) for the precise definition of Vol+X|V (D)).

Proof. See [20, Theorem 3.20]. 2
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6. The Relations of the Schottky Problem to the André-Oort Conjecture,
Okounkov Bodies and Coleman’s Conjecture

In this section, we discuss the relations among logarithmical line bundles on
toroidal compactifications, the André-Oort conjecture, Okounkov convex bodies,
Coleman’s conjecture and the Schottky problem.

For τ = (τij) ∈ Hg, we write τ = X + i Y with X = (xij), Y = (yij) real. We
put dτ = (dτij) and dτ = (dτ ij). We also put

∂

∂Ω
=

(
1 + δij

2

∂

∂τij

)
and

∂

∂Ω
=

(
1 + δij

2

∂

∂τ ij

)
.

C. L. Siegel [130] introduced the symplectic metric ds2g;A on Hg invariant under the
action (1.1) of Sp(2g,R) that is given by

(6.1) ds2g;A = A tr(Y −1dτ Y −1dτ), A ∈ R+

and H. Maass [89] proved that its Laplacian is given by

(6.2) 2g;A =
4

A
tr

(
Y

t(
Y
∂

∂Ω

)
∂

∂Ω

)
.

Here tr(M) denotes the trace of a square matrix M . And

(6.3) dvg(τ) = (detY )−(g+1)
∏

1≤i≤j≤g

dxij
∏

1≤i≤j≤g

dyij

is a Sp(2g,R)-invariant volume element on Hg (cf. [131, p. 130]).

Siegel proved the following theorem for the Siegel space (Hg, ds
2
g;1).

Theorem 6.1. (Siegel [130]). (1) There exists exactly one geodesic joining two
arbitrary points τ0, τ1 in Hg. Let R(τ0, τ1) be the cross-ratio defined by

R(τ0, τ1) = (τ0 − τ1)(τ0 − τ1)
−1(τ0 − τ1)(τ0 − τ1)

−1.

For brevity, we put R∗ = R(τ0, τ1). Then the symplectic length ρ(τ0, τ1) of the
geodesic joining τ0 and τ1 is given by

ρ(τ0, τ1)
2 = σ

(log 1 +R
1
2
∗

1−R
1
2
∗

)2
 ,

where (
log

1 +R
1
2
∗

1−R
1
2
∗

)2

= 4R∗

( ∞∑
k=0

Rk
∗

2k + 1

)2

.
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(2) For M ∈ Sp(2g,R), we set

τ̃0 =M · τ0 and τ̃1 =M · τ1.

Then R(τ1, τ0) and R(τ̃1, τ̃0) have the same eigenvalues.

(3) All geodesics are symplectic images of the special geodesics

α(t) = i diag(at1, a
t
2, · · · , atg),

where a1, a2, · · · , ag are arbitrary positive real numbers satisfying the condition

g∑
k=1

(log ak)
2
= 1.

The proof of the above theorem can be found in [90] or [130, pp. 289-293].

Definition 6.1. Let Z be an irreducible subvariety of a Shimura variety ShK(G,X).
Choose a connected component S of X and a class ηK ∈ G(Af )/K such that Z
is contained in the image of S in ShK(G,X). We say that Z is a totally geodesic
subvariety if there is a totally geodesic subvariety Y ⊆ S such that Z is the image
of Y × ηK in ShK(G,X).

B. Moonen [94] proved the following fact.

Theorem 6.2. Let Z be an irreducible subvariety of a Shimura variety ShK(G,X).
Then Z is weakly special if and only if it is totally geodesic.

Proof. See [94, Theorem 4.3, pp. 553–554]. 2

In the 1980s Coleman [25] proposed the following conjecture.

Coleman’s Conjecture. For a sufficiently large integer g, the Jacobian locus Jg
contains only a finite number of special points in Ag.

We also have the following conjecture.

Conjecture 6.1. For a sufficiently large integer g, the Jacobian locus Jg cannot
contain a non-trivial totally geodesic subvariety.

Remark 6.1. Conjecture 6.1 is false for an integer g ≤ 6.

The stronger version of Conjecture 6.1 is given as follows:

Conjecture 6.2. For a sufficiently large integer g, there does not exist a geodesic
in Ag contained in Jg and intersecting Jg.

Theorem 6.3. Suppose the André-Oort conjecture and Conjecture 6.1 hold. Then
Coleman’s conjecture is true.
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Proof. Let g be a sufficiently large integer g. Suppose Jg contains an infinite set Σ
of special points. Then

Σ ⊂ Σ ⊂ Jg ⊂ Ag.

The truth of the André-Oort conjecture implies that Σ contains an irreducible
special subvariety Y . According to Theorem 6.2, Y is a totally geodesic subvariety
of Jg. From the truth of Conjecture 6.1, we get a contradiction. Therefore Jg
contains only finitely many special points. 2

Now we propose the following problems.

Problem 6.1. Develop the spectral theory of the Laplace operator 2g;A,B on Hg

and Γ\Hg for a congruence subgroup Γ of Γg explicitly.

Problem 6.2. Construct all the geodesics contained in Jg with respect to the
Siegel’s metric ds2g;A.

Problem 6.3. Study variations of g-dimensional principally polarized abelian va-
rieties along a geodesic inside Jg.

Problem 6.4. Prove the A-O conjecture for Ag unconditionally.

From now on, we will adopt the notations in Section 3.

Problem 6.5. Let p4,Γ : A4,Γ −→ A4 be a covering map and let J4,Γ := p−14,Γ(J4).

Let A4,Γ be a toroidal compactification of A4,Γ which is projective. Then J4,Γ
is a divisor on A4,Γ. Compute the Okounkov bodies ∆Y•(J4,Γ), ∆val

Y•
(J4,Γ) and

∆lim
Y•

(J4,Γ) explicitly. Describe the relations among J4, J4,Γ and these Okounkov
bodies explicitly. Describe the relations between these Okounkov bodies and the
GL(4,Z)-admissible family of polyhedral decompositions defining the toroidal com-
pactification A4,Γ.

Problem 6.6. Assume that a toroidal compactification Ag,Γ is a projective va-
riety. Compute the Okoukov convex bodies ∆Y•(Kg,Γ), ∆val

Y•
(Kg,Γ), ∆lim

Y•
(Kg,Γ),

∆Y•(D∞,Γ), ∆val
Y•

(D∞,Γ), ∆lim
Y•

(D∞,Γ), ∆Y•(Kg,Γ + D∞,Γ), ∆val
Y•

(Kg,Γ + D∞,Γ),

∆lim
Y•

(Kg,Γ +D∞,Γ) explicitly. Describe the relations between these Okounkov bod-
ies and the GL(g,Z)-admissible family of polyhedral decompositions defining the
toroidal compactification Ag,Γ.

Problem 6.7. Assume that g ≥ 5. Let pg,Γ : Ag,Γ −→ Ag be a covering map and
let Jg,Γ := p−1g,Γ(Jg). Assume that Ag,Γ is a toroidal compactification of Ag,Γ which

is a projective variety. Let DJ,Γ be a divisor on Ag,Γ containing Jg,Γ. Describe the
Okounkov bodies ∆Y•(DJ,Γ), ∆

val
Y•

(DJ,Γ), ∆
lim
Y•

(DJ,Γ). Study the relations between
Jg,Γ, DJ,Γ and these Okounkov bodies.
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We have the following diagram:

Jg,Γ Ag,Γ Ag,Γ = Ator
g,Γ

Jg Ag

⊂ ⊂

pg,Γ

⊂

Here pg,Γ : Ag,Γ −→ Ag is a covering map.

Finally we propose the following questions.

Question 6.1. Let Γ be a neat arithmetic subgroup of Γg. Does the closure Jg,Γ

of Jg,Γ intersect the infinity boundary divisor D∞,Γ? If g is sufficient large, it is
probable that Jg,Γ will not intersect the boundary divisor D∞,Γ.

Question 6.2. Let Γ be a neat arithmetic subgroup of Γg. Does the closure Jg,Γ

of Jg,Γ intersect the canonical divisor Kg,Γ?

Question 6.3. Let Γ be a neat arithmetic subgroup of Γg. How curved is the
closure Jg,Γ of Jg,Γ along the boundary of Jg,Γ?

Quite recently using the good curvature properties of the moduli space
(Mg, ωWP) endowed with the Weil-Petersson metric ωWP , Liu, Sun and Yau [87]
obtained interesting results related to Conjecture 6.2. Let us explain their results
briefly. We consider the coarse moduli space (Mg, ωWP

) endowed with the Weil-
Petersson metric ω

WP
and the Siegel modular variety (Ag, ωH

) endowed with the
Hodge metric ω

H
. Let Tg : Mg −→ Ag be the Torelli map (see (1.2)). Assume that

V is a submanifold in Mg such that the image Tg(V ) is totally geodesic in (Ag, ωH
),

and also that Tg(V ) has finite volume. Under these two assumptions they proved
that V must be a ball quotient. As a corollary of this fact, it can be shown that
there is no higher rank locally symmetric subspace in Mg. A precise statement is
as follows.

Theorem 6.4. Let Ω be an irreducible bounded symmetric domain and let Γ ⊂
Aut(D) be a torsion free cocompact lattice. We set X = Ω/Γ. Let h be a canonical
metric on X. If there exists a nonconstant holomorphic mapping

f : (X,h) −→ (Mg, ωWP),

then Ω must be of rank 1, i.e., X must be a ball quotient.

Proof. The proof of the above theorem can be found in [87]. 2

7. Final Remarks and Open Problems

In this final section we give some remarks and propose some open problems
about the relations among the Schottky problem, the André-Oort conjecture, Ok-
ounkov convex bodies, stable Schottky-Siegel forms, stable Schottky-Jacobi forms
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and the geometry of the Siegel-Jacobi space. We define the notion of stable
Schottky-Jacobi forms and the concept of stable Jacobi equations for the universal
hyperelliptic locus.

For two positive integers g and h, we consider the Heisenberg group

H
(g,h)
R =

{
(λ, µ;κ) | λ, µ ∈ R(h,g), κ ∈ R(h,h), κ+ µ tλ symmetric

}
endowed with the following multiplication law(

λ, µ;κ
)
◦
(
λ′, µ′;κ′

)
=
(
λ+ λ′, µ+ µ′;κ+ κ′ + λ tµ′ − µ tλ′

)
with

(
λ, µ;κ

)
,
(
λ′, µ′;κ′

)
∈ H

(g,h)
R .We refer to [146, 151, 154, 157, 160, 167, 170, 173]

for more details on the Heisenberg group H
(g,h)
R . We define the Jacobi group GJ of

degree g and index h that is the semidirect product of Sp(2g,R) and H(g,h)
R

GJ = Sp(2g,R)⋉H
(g,h)
R

endowed with the following multiplication law(
M, (λ, µ;κ)

)
·
(
M ′, (λ′, µ′;κ′ )

)
=
(
MM ′, (λ̃+ λ′, µ̃+ µ′;κ+ κ′ + λ̃ tµ′ − µ̃ tλ′ )

)
with M,M ′ ∈ Sp(2g,R), (λ, µ;κ), (λ′, µ′;κ′) ∈ H

(g,h)
R and (λ̃, µ̃) = (λ, µ)M ′. Then

GJ acts on Hg × C(h,g) transitively by

(7.1)
(
M, (λ, µ;κ)

)
· (τ, z) =

(
(Aτ +B)(Cτ +D)−1, (z + λτ + µ)(Cτ +D)−1

)
,

where M =

(
A B
C D

)
∈ Sp(2g,R), (λ, µ;κ) ∈ H

(g,h)
R and (τ, z) ∈ Hg × C(h,g).

We note that the Jacobi group GJ is not a reductive Lie group and the homogeneous
space Hg × C(h,g) is not a symmetric space. From now on, for brevity we write
Hg,h = Hg × C(h,g). The homogeneous space Hg,h is called the Siegel-Jacobi space
of degree g and index h.

For τ = (τij) ∈ Hg, we write τ = X + iY with X = (xij), Y = (yij) real. We
put dτ = (dτij) and dτ = (dτ ij). We also put

∂

∂Ω
=

(
1 + δij

2

∂

∂τij

)
and

∂

∂Ω
=

(
1 + δij

2

∂

∂τ ij

)
.

For a coordinate z ∈ C(h,g), we set

z = U + iV, U = (ukl), V = (vkl) real,

dz = (dzkl), dz = (dzkl),
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∂

∂Z
=


∂

∂z11
. . . ∂

∂zh1

...
. . .

...
∂

∂z1g
. . . ∂

∂zhg

 ,
∂

∂Z
=


∂

∂z11
. . . ∂

∂zh1

...
. . .

...
∂

∂z1g
. . . ∂

∂zhg

 .

The author proved the following theorems in [163].

Theorem 7.1. For any two positive real numbers A and B,

ds2g,h;A,B = A · tr
(
Y −1dτ Y −1dτ

)
+B ·

{
tr
(
Y −1 tV V Y −1dτ Y −1dτ

)
+ tr

(
Y −1 t(dz) dz

)
−tr
(
V Y −1dτ Y −1 t(dz)

)
− tr

(
V Y −1dτ Y −1 t(dz)

)}
is a Riemannian metric on Hg,h which is invariant under the action (7.1) of GJ .
In fact, ds2g,h is a Kähler metric of Hg,h.

Proof. See [163, Theorem 1.1]. 2

Theorem 7.2. The Laplacian ∆g,h;A,B of the GJ -invariant metric ds2g,h;A,B is
given by

∆g,h;A,B =
4

A
·M1 +

4

B
·M2,

where

M1 = tr

(
Y

t(
Y
∂

∂Ω

)
∂

∂Ω

)
+ tr

(
V Y −1 tV

t(
Y
∂

∂Z

)
∂

∂Z

)

+tr

(
V

t(
Y
∂

∂Ω

)
∂

∂Z

)
+ tr

(
tV

t(
Y
∂

∂Z

)
∂

∂Ω

)
and

M2 = tr

(
Y

∂

∂Z

t( ∂

∂Z

))
.

Furthermore M1 and M2 are differential operators on Hg,h invariant under the
action (7.1) of GJ .

Proof. See [163, Theorem 1.2]. 2

Remark 7.1. We refer to [36, 75, 164, 166, 171, 175, 176, 178] for topics related
to ds2g,h;A,B and 2g,h;A,B .

Remark 7.2. Erik Balslev [11] developed the spectral theory of 21,1;1,1 on H1 ×C
for certain arithmetic subgroups of the Jacobi modular group to prove that the set
of all eigenvalues of 21,1;1,1 satisfies the Weyl law.
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Remark 7.3. The sectional curvature of (H1 × C, ds21,1;A,B) is − 3
A and hence is

independent of the parameter B. We refer to [176] for more detail.

Remark 7.4. For an application of the invariant metric ds2g,h;A,B we refer to [175].

Definition 7.1. Let D = diag(d1, d2, · · · , dg) be the g × g diagonal matrix with
positive integers d1, · · · , dg satisfying d1|d2| · · · |dg, usually called a polarization type.
D = Ig is called the principal polarization type.

For a fixed τ ∈ Hg and a fixed polarization type D = diag(d1, · · · , dg), we let
LD
τ := Zgτ + ZgD be a lattice in Cg and AD

τ := Cg/LD
τ be a complex torus of a

polarization type D. Let {c0, · · · , cN} be the set of representatives in ZgD−1 whose
components of each ci (0 ≤ i ≤ N) lie in the interval [0, 1). Here N = d1 · · · dg − 1.

We recall Lefschetz theorem (see [100, p. 128, Theorem 1.3]).

Theorem 7.3. Let D = diag(d1, · · · , dg) be a polarization type and N = d1 · · · dg−
1.

(1) Assume d1 ≥ 2. Then the functions

{
θ

[
c0
0

]
(τ, z), · · · , θ

[
cN
0

]
(τ, z)

}
have no

zero in common, and the mapping φD : Hg × Cg −→ PN (C) defined by

(7.2) φD(τ, z) :=

(
θ

[
c0
0

]
(τ, z) : · · · · · : θ

[
cN
0

]
(τ, z)

)
, (τ, z) ∈ Hg × Cg

is a well-defined holomorphic mapping. For each τ ∈ Hg, the map φD
τ : Cg −→

PN (C) defined by

(7.3) φD
τ (z) := φD(τ, z), z ∈ Cg

induces a holomorphic mapping from the complex torus AD
τ into PN (C).

(2) If d1 ≥ 3, for each τ ∈ Hg, the map φD
τ : Cg −→ PN (C) is an analytic embedding,

whose image is an algebraic subvariety of PN (C).

Definition 7.2. Let D = diag(d1, · · · , dg) with d1 ≥ 2 be a polarization type, and
N = d1 · · · dg − 1. For each τ ∈ Hg, we define the map ΨD : Hg −→ PN (C) by

(7.4) ΨD(τ) := φD(τ, 0), τ ∈ Hg

and define the map ΦD : Hg × Cg −→ PN (C)× PN (C) by

(7.5) ΦD(τ, z) :=
(
φD(τ, z),ΨD(τ)

)
, (τ, z) ∈ Hg × Cg.

We have the following theorem proved by Baily [10].

Theorem 7.4. Assume that d1 ≥ 4 and that 2|d1 or 3|d1. Then the image of Hg×Cg

under ΦD is a Zariski-open subset of an algebraic subvariety of PN (C)× PN (C).
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Proof. See [10, Section 5.1] or [110, Theorem 8.11]. □

Let
ΓJ
g := Γg ⋉H

(g,h)
Z

be the arithmetic subgroup of GJ , where

H
(g,h)
Z :=

{
(λ, µ;κ) ∈ H

(g,h)
R | λ, µ, κ are integral

}
.

We let

(7.6) Ag,h = ΓJ
g \Hg,h

be the universal family of principal polarized abelian varieties of dimension gh. Let
πg,h : Ag,h −→ Ag be the natural projection. We define the universal Jacobian
locus

(7.7) Jg,h := π−1g,h(Jg), Jg(⊂ Ag) := the Jacobian locus.

Problem 7.1. Characterize Jg,h = π−1g,h(Jg). Describe Jg,h in terms of Jacobi forms.
We refer to [15, 37, 147, 149, 150, 152, 153, 155, 158, 159, 161, 162, 168, 171, 179]
for more details about Jacobi forms.

Problem 7.2. Compute the geodesics, the distance between two points and cur-
vatures explicitly in the Siegel-Jacobi space (Hg,h, ds

2
g,h;A,B). See Theorem 6.1 for

the Siegel space Hg.

Problem 7.3. Find the analogue of the Hirzebruch-Mumford Proportionality The-
orem for Au

g,Γ (see (7.8) below).

Let us give some remarks for this problem. Before we describe the propor-
tionality theorem for the Siegel modular variety, first of all we review the compact
dual of the Siegel upper half plane Hg. We note that Hg is biholomorphic to the
generalized unit disk Dg of degree g through the Cayley transform. We suppose
that Λ = (Z2g, ⟨ , ⟩) is a symplectic lattice with a symplectic form ⟨ , ⟩. We extend
scalars of the lattice Λ to C. Let

Yg :=
{
L ⊂ C2g | dimC L = g, ⟨x, y⟩ = 0 for all x, y ∈ L

}
be the complex Lagrangian Grassmannian variety parameterizing totally isotropic
subspaces of complex dimension g. For the present time being, for brevity, we put
G = Sp(2g,R) and K = U(g). The complexification GC = Sp(2g,C) of G acts on
Yg transitively. If H is the isotropy subgroup of GC fixing the first summand Cg,
we can identify Yg with the compact homogeneous space GC/H. We let

Y+
g :=

{
L ∈ Yg | − i⟨x, x̄⟩ > 0 for all x( ̸= 0) ∈ L

}
be an open subset of Yg. We see that G acts on Y+

g transitively. It can be shown
that Y+

g is biholomorphic to G/K ∼= Hg. A basis of a lattice L ∈ Y+
g is given by
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a unique 2g × g matrix t(−Ig τ) with τ ∈ Hg. Therefore we can identify L with τ
in Hg. In this way, we embed Hg into Yg as an open subset of Yg. The complex
projective variety Yg is called the compact dual of Hg.

Let Γ be an arithmetic subgroup of Γg. Let E0 be a G-equivariant holomorphic
vector bundle over Hg = G/K of rank r. Then E0 is defined by the representation
τ : K −→ GL(r,C). That is, E0

∼= G ×K Cr is a homogeneous vector bundle over
G/K. We naturally obtain a holomorphic vector bundle E over Ag,Γ := Γ\G/K.
E is often called an automorphic or arithmetic vector bundle over Ag,Γ. Since K is
compact, E0 carries a G-equivariant Hermitian metric h0 which induces a Hermitian
metric h on E. According to Main Theorem in [97], E admits a unique extension
Ẽ to a smooth toroidal compactification Ãg,Γ of Ag,Γ such that h is a singular

Hermitian metric good on Ãg,Γ. For the precise definition of a good metric on
Ag,Γ we refer to [97, p. 242]. According to Hirzebruch-Mumford’s Proportionality
Theorem (cf. [97, p. 262]), there is a natural metric on G/K = Hg such that the
Chern numbers satisfy the following relation

cα
(
Ẽ
)
= (−1)

1
2 g(g+1) vol (Γ\Hg) c

α
(
Ě0

)
for all α = (α1, · · · , αr) with nonegative integers αi (1 ≤ i ≤ r) and

∑r
i=1 αi =

1
2g(g + 1), where Ě0 is the GC-equivariant holomorphic vector bundle on the com-
pact dual Yg of Hg defined by a certain representation of the stabilizer StabGC(e)
of a point e in Yg. Here vol (Γ\Hg) is the volume of Γ\Hg that can be com-
puted (cf. [130]).

Problem 7.4. Compute the cohomology H•(Ag,h, ∗) of Ag,h. Investigate the in-
tersection cohomology of Ag,h.

Problem 7.5. Generalize the trace formula on the Siegel modular variety obtained
by Sophie Morel to the universal abelian variety. For her result on the trace formula
on the Siegel modular variety, we refer to her paper [95, Cohomologie d’intersection
des variétés modulaires de Siegel, suite].

Problem 7.6. Construct all the geodesics contained in Jg,h.

Problem 7.7. Develop the theory of variations of abelian varieties along the
geodesic joining two points in Jg,h.

Problem 7.8. Discuss the André-Oort conjecture for Ag,h. Gao proved the Ax-
Lindemann-Weierstras theorem for Ag,h, and using this theorem proved the André-
Oort conjecture for Ag,h under the assumption of the Generalized Riemann Hy-
pothesis for CM fields in his paper [52].

Let Γ be a neat arithmetic subgroup of Γg. We put ΓJ := Γ⋉H
(g,h)
Z . We let

(7.8) Ag,h,Γ := ΓJ \Hg,h.
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Let Ator
g,h,Γ be a toroidal compactification of Ag,h,Γ. Let Kg,h,Γ be the canonical line

bundle over Ator
g,h,Γ and let

(7.9) D∞,g,h,Γ := Ator
g,h,Γ\Ag,h,Γ

be the infinity boundary divisor on Ator
g,h,Γ. Let πg,h,Γ : Ag,h,Γ −→ Ag,Γ be a

projection and let pg,Γ : Ag,Γ −→ Ag be a covering map. We define

(7.10) Jg,h,Γ := (pg,Γ ◦ πg,h,Γ)−1 (Jg).

Problem 7.9. Assume that Ator
4,h,Γ is a toroidal compactification of A4,h,Γ

which is projective. Compute the Okounkov bodies ∆Y•(J4,h,Γ), ∆
val
Y•

(J4,h,Γ) and

∆lim
Y•

(J4,h,Γ) explicitly. Describe the relations among J4, J4,h,Γ and these Okounkov
bodies explicitly. Describe the relations between these Okounkov bodies and the
GL(4,Z)-admissible family of polyhedral decompositions defining the toroidal com-
pactification A4,Γ.

Problem 7.10. Assume that a toroidal compactification Ator
g,h,Γ is a projective

variety. Let Kg,h,Γ be the canonical line bundle over Ator
g,h,Γ and D∞,g,h,Γ be

the infinity boundary divisor on Ator
g,h,Γ. Compute the Okoukov convex bodies

∆Y•(Kg,h,Γ), ∆
val
Y•

(Kg,h,Γ),∆
lim
Y•

(Kg,h,Γ),∆Y•(D∞,g,h,Γ),∆
val
Y•

(Du
∞,Γ), ∆

lim
Y•

(D∞,g,h,Γ),

∆Y•(Kg,h,Γ +D∞,g,h,Γ), ∆val
Y•

(Kg,h,Γ +D∞,g,h,Γ) and ∆lim
Y•

(Kg,h,Γ +D∞,g,h,Γ) ex-
plicitly. Describe the relations between these Okounkov bodies and the GL(g,Z)-
admissible family of polyhedral decompositions defining the toroidal compactifica-
tion Ator

g,h,Γ.

Problem 7.11. Assume that a toroidal compactification Ator
g,h,Γ of Ag,h,Γ is a

projective variety. Let DJ,Γ be a divisor on Ator
g,h,Γ containing Jg,h,Γ. Describe

the Okounkov bodies ∆Y•(DJ,Γ), ∆val
Y•

(DJ,Γ) and ∆lim
Y•

(DJ,Γ). Study the relations
among Jg,Γ, Jg,h,Γ, DJ,Γ and these Okounkov bodies.

We have the following diagram:

Ag,h,Γ Ag,h,Γ = Ator
g,h,Γ

Ag,h Ag,Γ

Ag

⊂
πg,h,Γ

pg,h,Γ

πg,h pg,Γ

Here pg,h,Γ : Ag,h,Γ −→ Ag,h is a covering map.

We propose the following questions.
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Question 7.1. Let Γ be a neat arithmetic subgroup of Γg. Does the closure Jg,h,Γ

of Jg,h,Γ intersect the infinity boundary divisor D∞,g,h,Γ? If g is sufficient large, it
is probable that Jg,h,Γ will not intersect the boundary divisor Du

∞,g,h,Γ.

Question 7.2. Let Γ be a neat arithmetic subgroup of Γg. Does the closure Jg,h,Γ

of Jg,h,Γ intersect the canonical divisor Kg,h,Γ?

Question 7.3. Let Γ be a neat arithmetic subgroup of Γg. How curved is the
closure Jg,h,Γ of Jg,h,Γ along the boundary of Jg,h,Γ?

Now we make some conjectures.

Conjecture 7.1. For a sufficiently large integer g, the locus Jg,h contains only
finitely many special points. This is an analogue (or generalization) of Coleman’s
conjecture.

Conjecture 7.2. For a sufficiently large integer g, the locus Jg,h cannot con-
tain a non-trivial totally geodesic subvariety inside Ag,h for the Riemannian metric
ds2g,h;A,B.

Conjecture 7.3. For a sufficiently large integer g, there does not exist a geodesic
that is contained in Jg,h for the Riemannian metric ds2g,h;A,B.

Finally we discuss the connection between the universal Jacobian locus Jg,h
and stable Jacobi forms. We refer to Appendix E in this article for more details on
stable Jacobi forms. First we review the concept of stable modular forms introduced
in [45]. The Siegel Φ-operator

(7.11) Φg,k : [Γg+1, k] −→ [Γg, k], k ∈ Z+

defined by

(Φg,kf)(τ) := lim
t→∞

f

((
τ 0
0 it

))
, f ∈ [Γg+1, k], τ ∈ Hg,

where [Γg, k] denotes the vector space of all Siegel modular forms on Hg of weight
k. Using the theory of Poincaré series, H. Maass [88] proved that if k is even and
k > 2g, then Φg,k is a surjective linear map. In 1977, using the theory of singular
modular forms, E. Freitag [45] proved the following facts (a) and (b) :

(a) for a fixed even integer k, Φg,k is an isomorphism if g > 2k ;

(b) [Γg, k] = 0 if g > 2k, k ̸≡ 0 (mod 4).

The fact (a) means that the vector spaces [Γg, k] stabilize to the infinity vector
space [Γ∞, k] as g increases. In this sense, he introduced the notion of the stability
of Siegel modular forms.
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Definition 7.3. A Siegel modular form f ∈ [Γg, k] is said to be stable if there exists
a nonegative integer m ∈ Z+ satisfying the following conditions (SM1) and (SM2) :

(SM1) g +m > 2k;

(SM2) f = Φg+1,k ◦ Φg+2,k ◦ · · · ◦ Φg+m,k(F ) for some F ∈ [Γg+m, k].

Scalar-valued Siegel modular forms on Ag vanishing on the Jacobian locus,
equivalently, forms on the Satake compactification ASat

g that vanish on the closure

JSat
g of Jg in ASat

g are called Schottky-Siegel forms. The normalization ν : ASat
g −→

∂ASat
g+1 gives a restriction map which coincides with the Siegel operator Φg,k (k ∈

Z+).

We let

A(Γg) :=
⊕
k≥0

[Γg, k]

be the graded ring of Siegel modular forms on Hg. It is known that A(Γg) is a
finitely generated C-algebra and the field of modular functionsK(Γg) is an algebraic
function field of transcendence degree 1

2g(g + 1).

The ring

A =
⊕
k≥0

[Γ∞, k]

is an inverse limit in the category

(7.12) A = lim←−
g

A(Γg).

Freitag [45] proved that A is the polynomial ring over C on the set of theta series
θS , where S runs over the set of equivalence classes of indecomposable positive
definite unimodular even integral matrices. In general, A(Γg) is not a polynomial
ring (cf. [45, p. 204]).

We define the stable Satake compactification ASat
∞ by

(7.13) ASat
∞ :=

⋃
g

ASat
g = lim←−

g

ASat
g

and the stable Jacobian locus JSat
∞ by

(7.14) JSat
∞ :=

⋃
g

JSat
g = lim←−

g

JSat
g .

G. Codogni and N. I. Shepherd-Barron [24] proved the following theorem.
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Theorem 7.5. There are no stable Schottky-Siegel forms. That is, the homomor-
phism from

(7.15) A = lim←−
g

A(Γg) −→
⊕
k

H0(JSat
∞ , ω⊗k

J
)

induced by the inclusion JSat
∞ ↪→ ASat

∞ is injective, where ω
J
is the restriction of the

canonical line bundle ω on ASat
∞ to JSat

∞ .

Proof. See Theorem 1.3 and Corollary 1.4 in [24]. 2

We refer to Appendix D in this paper for the definition of Jacobi forms.

Now we consider the special case ρ = detk with k ∈ Z+. We define the Siegel-
Jacobi operator

Ψg,M : Jk,M(Γg) −→ Jk,M(Γg−1)

by

(7.16) (Ψg,MF )(τ, z) := lim
t−→∞

F

((
τ 0
0 it

)
, (z, 0)

)
,

where F ∈ Jk,M(Γg), τ ∈ Hg−1 and z ∈ C(h,g−1). We observe that the above limit
exists and Ψg,M is a well-defined linear map (cf. [179]).

The author [149] proved the following theorems.

Theorem 7.6. Let 2M be a positive even unimodular symmetric integral matrix
of degree h and let k be an even nonnegative integer. If g + h > 2k, then the
Siegel-Jacobi operator Ψg,M is injective.

Proof. See [149, Theorem 3.5]. 2

Theorem 7.7. Let 2M be as above in Theorem 2.1 and let k be an even nonnegative
integer. If g+h > 2k+1, then the Siegel-Jacobi operator Ψg,M is an isomorphism.

Proof. See [149, Theorem 3.6]. 2

Theorem 7.8. Let 2M be as above in Theorem 2.1 and let k be an even nonnegative
integer. Assume that 2k > 4g+h and k ≡ 0 (mod 2). Then the Siegel-Jacobi operator
Ψg,M is surjective.

Proof. See [149, Theorem 3.7]. 2

Remark 7.5. The author [149, Theorem 4.2] proved that the action of the Hecke
operatos on Jacobi forms is compatible with that of the Siegel-Jacobi operator.
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Definition 7.4. A collection (Fg)g≥0 is called a stable Jacobi form of weight k and
index M if it satisfies the following conditions (SJ1) and (SJ2):

(SJ1) Fg ∈ Jk,M(Γg) for all g ≥ 0.

(SJ2) Ψg,MFg = Fg−1 for all g ≥ 1.

Remark 7.6. The concept of a stable Jacobi forms was introduced by the au-
thor [148, 158].

Example. Let S be a positive even unimodular symmetric integral matrix of degree

2k and let c ∈ Z(2k,h) be an integral matrix. We define the theta series ϑ
(g)
S,c by

ϑ
(g)
S,c(τ, z) :=

∑
λ∈Z(2k,g)

eπi{tr(Sλτ tλ)+2 tr(tc Sλ tz)}, (τ, z) ∈ Hg,h.

It is easily seen that ϑ
(g)
S,c ∈ Jk,M(Γg) with M := 1

2
tcSc for all g ≥ 0 and Ψg,Mϑ

(g)
S,c =

ϑ
(g−1)
S,c for all g ≥ 1. Thus the collection

ΘS,c :=
(
ϑ
(g)
S,c

)
g≥0

is a stable Jacobi form of weight k and index M.

Definition 7.5. Let M be a half-integral semi-positive symmetric matrix of degree
h and k ∈ Z+. A Jacobi form F ∈ Jk,M(Γg) is called a Schottky-Jacobi form of
weight k and index M for the universal Jacobian locus if it vanishes along Jg,h.

Definition 7.6. Let M be a half-integral semi-positive symmetric matrix of degree
h and k ∈ Z+. A collection (Fg)g≥0 is called a stable Schottky-Jacobi form of weight
k and index M if it satisfies the following conditions (1) and (2):

(1) Fg ∈ Jk,M(Γg) is a Schottky-Jacobi form of weight k and index M for all
g ≥ 0.

(2) Ψg,MFg = Fg−1 for all g ≥ 1.

We expect to prove the following claim :

Claim: There are no stable Schottky-Jacobi forms for the universal Jacoban locus.

The author [174] proved the following.

Theorem 7.9. Let 2M be a positive even unimodular symmetric integral matrix of
degree h. Then there do not exist stable Schottky-Jacobi forms of index M for the
universal Jacobian locus.
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Proof. See [174, Theorem 4.1]. 2

Let (Λ, Q) be an even unimodular positive definite quadratic form of rank m.
That is, Λ is a finitely generated free group of rank m and Q is an integer-valued
bilinear form on Λ such that Q is even and unimodular. For a positive integer g,
the theta series θQ,g associated to (Λ, Q) is defined to be

θQ,g(τ) :=
∑

x1,··· ,xg∈Λ
exp

(
πi

g∑
p,q

Q(xp, xq)τpq

)
, τ = (τpq) ∈ Hg.

It is well known that θQ,g(τ) is a Siegel modular form on Hg of weight m
2 . We easily

see that
Φg,m2

(θQ,g+1) = θQ,g for all g ∈ Z+.

Therefore the collection of all theta series associated to (Λ, Q)

ΘQ := (θQ,g)g≥0

is a stable modular form.

Definition 7.7. A stable equation for the hyperelliptic locus is a stable modular
form (fg)g≥0 such that fg vanishes along the hyperelliptic locus Hypg for every g.

Recently G. Codogni [23] proved the following.

Theorem 7.10. The ideal of stable equations of the hyperelliptic locus is generated
by differences of theta series

θP − θQ,

where P and Q are even unimodular positive definite quadratic forms of the same
rank.

Proof. See Theorem 1.2 or Theorem 4.2 in [23]. 2

In a similar way we may define the concept of stable Jacobi equation.

Definition 7.8. A stable Jacobi equation of index M for the universal hyperelliptic
locus is a stable Jacobi form (Fg,M)g≥0 of index M such that Fg,M vanishes along
the universal hyperelliptic locus Hypg,h := π−1g,h(Hypg) for every g.

The author [174] proved the following.

Theorem 7.11. Let 2M be a positive even unimodular symmetric integral matrix
of degree h. Then there exist non-trivial stable Schottky-Jacobi forms of M for the
universal hyperelliptic locus.

Proof. See [174, Theorem 4.2]. 2

Problem 7.12. Find the ideal of stable Jacobi equations of the universal hyperel-
liptic locus.
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Remark 7.7. We consider a half-integral semi-positive symmetric integral matrix
M such that 2M is not even or which is not unimodular. The natural questions
arise:

Question 7.1. Are there non-trivial stable Schottky-Jacobi forms of index M for
the universal Jacobian locus?

Question 7.2. Are there non-trivial stable Schottky-Jacobi forms of index M for
the universal hyperelliptic locus?

Appendix A. Subvarieties of the Siegel Modular Variety

In this appendix A, we give a brief remark on subvarieties of the Siegel modular
variety and present several problems. This appendix was written on the base of
the review [121] of G. K. Sankaran for the paper [165]. In fact, Sankaran made
a critical review on Section 10. Subvarieties of the Siegel modular variety of the
author’s paper [165] and corrected some wrong statements and information given
by the author. In this sense the author would like to give his deep thanks to the
reviewer, Sankanran.

Here we assume that the ground field is the complex number field C.

Definition A.1. A nonsingular variety X is said to be rational if X is birational to
a projective space Pn(C) for some integer n. A nonsingular variety X is said to be
stably rational if X ×P k(C) is birational to PN (C) for certain nonnegative integers
k and N . A nonsingular variety X is called unirational if there exists a dominant
rational map φ : Pn(C) −→ X for a certain positive integer n, equivalently if the
function field C(X) of X can be embedded in a purely transcendental extension
C(z1, · · · , zn) of C.

Remarks A.2. (1) It is easy to see that the rationality implies the stably ratio-
nality and that the stably rationality implies the unirationality.

(2) If X is a Riemann surface or a complex surface, then the notions of rationality,
stably rationality and unirationality are equivalent one another.

(3) H. Clemens and P. Griffiths [22] showed that most of cubic threefolds in P 4(C)
are unirational but not rational.

The following natural questions arise :

Question 1. Is a stably rational variety rational?

Question 2. Is a general hypersurface X ⊂ Pn+1(C) of degree d ≤ n + 1 unira-
tional?

Question 1 is a famous one raised by O. Zariski (cf. B. Serge, Algebra and Number
Theory (French), CNRS, Paris (1950), 135–138; MR0041480). In [12], A. Beauville,
J.-L. Colliot-Thélène, J.-J. Sansuc and P. Swinnerton-Dyer gave counterexamples,
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e.g., the Cĥatelot surfaces Vd,P ⊂ A3
C defined by y2 − dz2 = P (x), where P ∈ C[x]

is an irreducible polynomial of degree 3, and d is the discriminant of P such that d
is not a square and hence answered negatively to Question 1.

Definition A.3. Let X be a nonsingular variety of dimension n and let KX be the
canonical divisor of X. For each positive integer m ∈ Z+, we define the m-genus
Pm(X) of X by

Pm(X) := dimCH
0(X,O(mKX)).

The number pg(X) := P1(X) is called the geometric genus of X. We let

N(X) :=
{
m ∈ Z+ |Pm(X) ≥ 1

}
.

For the present, we assume that N(X) is nonempty. For each m ∈ N(X), we let
{ϕ0, · · · , ϕNm} be a basis of the vector space H0(X,O(mKX)). Then we have the
mapping ΦmKX

: X −→ PNm(C) by

ΦmKX
(z) := (ϕ0(z) : · · · : ϕNm(z)), z ∈ X.

We define the Kodaira dimension κ(X) of X by

κ(X) := max { dimC ΦmKX
(X) | m ∈ N(X)} .

If N(X) is empty, we put κ(X) := −∞. Obviously κ(X) ≤ dimCX. A nonsingular
variety X is said to be of general type if κ(X) = dimCX. A singular variety Y in
general is said to be rational, stably rational, unirational or of general type if any
nonsingular model X of Y is rational, stably rational, unirational or of general type
respectively. We define

Pm(Y ) := Pm(X) and κ(Y ) := κ(X).

A variety Y of dimension n is said to be of logarithmic general type if there exists
a smooth compactification Ỹ of Y such that D := Ỹ − Y is a divisor with normal
crossings only and the transcendence degree of the logarithmic canonical ring

⊕∞m=0H
0(Ỹ , m(KỸ + [D]))

is n + 1, i.e., the logarithmic Kodaira dimension of Y is n. We observe that the
notion of being of logarithmic general type is weaker than that of being of general
type.

Let Ag := Γg\Hg be the Siegel modular variety of degree g, that is, the moduli
space of principally polarized abelian varieties of dimension g. So far it has been
proved that Ag is of general type for g ≥ 7. At first Freitag [44] proved this fact
when g is a multiple of 24. Tai [133] proved this for g ≥ 9 and Mumford [99] proved
this fact for g ≥ 7. On the other hand, Ag is known to be unirational for g ≤ 5 :
Donagi [30] for g = 5, Clemens [21] for g = 4 and classical for g ≤ 3. For g = 3, using
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the moduli theory of curves, Riemann [118], Weber [139] and Frobenius [51] showed
that A3(2) := Γ3(2)\H3 is a rational variety and moreover gave 6 generators of the
modular function field K(Γ3(2)) written explicitly in terms of derivatives of odd
theta functions at the origin. So A3 is a unirational variety with a Galois covering
of a rational variety of degree [Γ3 : Γ3(2)] = 1, 451, 520. Here Γ3(2) denotes the
principal congruence subgroup of Γ3 of level 2. Furthermore it was shown that A3 is
stably rational (cf. [16, 77]). For a positive integer k, we let Γg(k) be the principal
congruence subgroup of Γg of level k. Let Ag(k) be the moduli space of abelian
varieties of dimension g with k-level structure. It is classically known that Ag(k)
is of logarithmic general type for k ≥ 3 (cf. [99]). Wang [137, 138] gave a different
proof for the fact that A2(k) is of general type for k ≥ 4. On the other hand, the
relation between the Burkhardt quartic and abelian surfaces with 3-level structure
was established by H. Burkhardt [17] in 1890. We refer to [70, § IV.2, pp. 132–135]
for more detail on the Burkhardt quartic. In 1936, J. A. Todd [134] proved that
the Burkhardt quartic is rational. van der Geer [56] gave a modern proof for the
rationality of A2(3). The remaining unsolved problems are summarized as follows:

Problem 1. Are A4, A5 stably rational or rational?

Problem 2. Discuss the (uni)rationality of A6.

We already mentioned that Ag is of general type if g ≥ 7. It is natural to ask
if the subvarieties of Ag (g ≥ 7) are of general type, in particular the subvarieties
of Ag of codimension one. Freitag [49] showed that there exists a certain bound
g0 such that for g ≥ g0, each irreducible subvariety of Ag of codimension one is
of general type. Weissauer [141] proved that every irreducible divisor of Ag is of
general type for g ≥ 10. Moreover he proved that every subvariety of codimension
≤ g − 13 in Ag is of general type for g ≥ 13. We observe that the smallest known
codimension for which there exist subvarieties of Ag for large g which are not of
general type is g − 1. A1 × Ag−1 is a subvariety of Ag of codimension g − 1 which
is not of general type.

Remark A.4. Let Mg be the coarse moduli space of curves of genus g over C.
Then Mg is an analytic subvariety of Ag of dimension 3g − 3. It is known that Mg

is rational for g = 2, 4, 5, 6. In 1915 Severi proved that Mg is unirational for g ≤ 10
(see E. Arbarello and E. Sernesi’s paper [8] for a modern rigorous proof). The
unirationality of M12 was proved by E. Sernesi [127] in 1981. Three years later the
unirationality of M11 and M13 was proved by M. C. Chang and Z. Ran [19]. So the
Kodaira dimension κ(Mg) of Mg is −∞ for g ≤ 13. In 1982 Harris and Mumford
[69] proved that Mg is of general type for odd g with g ≥ 25 and κ(M23) ≥ 0. J.
Harris [67] proved that if g ≥ 40 and g is even, Mg is of general type. In 1987 D.
Eisenbud and J. Harris [39] proved that Mg is of general type for all g ≥ 24 and
M23 has the Kodaira dimension at least one. In 1996 P. Katsylo [74] showed that
M3 is rational and hence A3.

Remark A.5. For more details on the geometry and topology of Ag and compact-
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ifications of Ag, we refer to [1, 40, 48, 55, 57, 58, 61, 71, 82, 91, 122, 123, 124, 137].

Appendix B. Extending of the Torelli Map to Toroidal Compactifications
of the Siegel Modular Variety

Let MDM
g be the Deligne-Mumford compactification of Mg consisting of isomor-

phism classes of stable curves of genus g. We recall ([29, 102, 105]) that a complete
curve C is said to be a stable curve of genus g ≥ 1 if

(S1) C is reduced;
(S2) C has only ordinary double points as possible singularities;
(S3) dimCH

1(C,OC) = 1;
(S4) each nonsingular rational component of C meets the other components at

more than two points.

P. Deligne and D. Mumford [29] proved that the coarse moduli space MDM
g is

an irreducible projective variety,and contains Mg as a Zariski open subset.

We have three standard explicit toroidal compactifications AVI
g , AVII

g and Acent
g

constructed from
(VI) the 1st Voronoi (or perfect) cone decomposition;
(VII) the 2nd Voronoi cone decomposition;
(cent) the central cone decomposition

respectively. We refer to [93, 128] for more details on the perfect cone decomposition
and the 2nd Voronoi cone decomposition. In 1973, Y. Namikawa [102] proposed a
natural question if the Torelli map

Tg : Mg −→ Ag

extends to a regular map

T cent
g : MDM

g −→ Acent
g .

In fact, Acent
g is the normalization of the Igusa blow-up of the Satake compacti-

fication ASat
g along the boundary ∂Acent

g . In the 1970s, Mumford and Namikawa
[103, 104] showed that the Torelli map Tg extends to a regular map

TVII
g : MDM

g −→ AVII
g .

In 2012, V. Alexeev and A. Brunyate [2] proved that the Torelli map Tg can be
extended to a regular map

TVI
g : MDM

g −→ AVI
g = Aperf

g

and that the extended Torelli map

T cent
g : MDM

g −→ Acent
g
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is regular for g ≤ 6 but not regular for g ≥ 9. Furthermore they also showed that
the two compactifications AVI

g and AVII
g are equal near the closure of the Jacobian

locus Jg. Almost at the same time the extended Torelli map T cent
g is regular for

g ≤ 8 by Alexeev and et al. [3].

I would like to mention that K. Liu, X. Sun and S.-T. Yau [83, 84, 85, 86]
showed the goodness of the Hermitian metrics on the logarithmic tangent bundle
on Mg which are induced by the Ricci and the perturbed Ricci metrics on Mg.
They also showed that the Ricci metric on Mg extends naturally to the divisor
Dg := MDM

g \Mg and coincides with the Ricci metric on each component of Dg.

Liu, Sun and Yau [84] showed that the existence of Kähler-Einstein metric on
Mg is related to the stability of the logarithmic cotangent bundle over MDM

g .

Let E be a holomorphic vector bundle over a complex manifold X of dimension
n. Let Φ := ΦX be a Kähler class (or form) of X. Then Φ-degree of E is defined
by

deg(E) :=

∫
X

c1(E) Φn−1

and the slope of E is defined to be

µ(E) :=
deg(E)

rank(E)
.

A bundle E is said to be Φ-stable if for any proper coherent subsheaf F ⊂ E, we
have

µ(F) < µ(E).

Let U be a local chart of Mg near the boundary with pinching coordinates
(t1, · · · , tm, sm+1, · · · , sn) such that (t1, · · · , tm) represent the degeneration direc-
tion. Let

Fi =
dti
ti

(1 ≤ i ≤ m), Fj = dsj (m+ 1 ≤ j ≤ n).

Then the logarithmic cotangent bundle (T ∗Mg)
DM is the unique extension of the

cotangent bundle T ∗Mg over Mg to MDM
g such that on U F1, F2, · · · , Fn is a local

holomorphic frame of (T ∗Mg)
DM.

Liu, Sun and Yau [84] proved the following.

Theorem B.1. The first Chern class c1
(
(T ∗Mg)

DM
)
is positive and (T ∗Mg)

DM is

stable with respect to c1
(
(T ∗Mg)

DM
)
.

Remark B.2. We refer to [18, 135, 144, 145] for some topics related to Mg and
MDM

g .
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Appendix C. Singular Modular Forms

Let ρ be a rational representation of GL(g,C) on a finite dimensional complex
vector space Vρ. A holomorphic function f : Hg −→ Vρ with values in Vρ is called a
modular form of type ρ if it satisfies

f(M · τ) = ρ(Cτ +D)f(τ)

for all

(
A B
C D

)
∈ Γg and τ ∈ Hg. We denote by [Γg, ρ] the vector space of all

modular forms of type ρ. A modular form f ∈ [Γg, ρ] of type ρ has a Fourier series

f(τ) =
∑
T≥0

a(T )e2πi(Tτ), τ ∈ Hg,

where T runs over the set of all semipositive half-integral symmetric matrices of
degree g. A modular form f of type ρ is said to be singular if a Fourier coefficient
a(T ) vanishes unless det (T ) = 0.

For τ = (τij) ∈ Hg, we write τ = X + i Y with X = (xij), Y = (yij) real. We
put

∂

∂Y
=

(
1 + δij

2

∂

∂yij

)
.

H. Maass [90] introduced the following differential operator

(C.1) Mg := det(Y ) · det
(
∂

∂Y

)
characterizing singular modular forms. Using the differential operator Mg, Maass
[90, pp. 202–204] proved that if a nonzero singular modular form of degree g and
type ρ := detk (or weight k) exists, then gk ≡ 0 (mod 2) and 0 < 2k ≤ g − 1. The
converse was proved by R. Weissauer [140].

Freitag [46] proved that every singular modular form can be written as a fi-
nite linear combination of theta series with harmonic coefficients and proposed the
problem to characterize singular modular forms. Weissauer [140] gave the following
criterion.

Theorem C.1. Let ρ be an irreducible rational representation of GL(g,C) with its
highest weight (λ1, · · · , λg). Let f be a modular form of type ρ. Then the following
are equivalent :

(a) f is singular.

(b) 2λg < g.

Now we describe how the concept of singular modular forms is closely related
to the geometry of the Siegel modular variety. Let X := ASat

g be the Satake com-
pactification of the Siegel modular variety Ag = Γg\Hg. Then Ag is embedded
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in X as a quasiprojective algebraic subvariety of codimension g. Let Xs be the
smooth part of Ag and X̃ the desingularization of X. Without loss of generality,

we assume Xs ⊂ X̃. Let Ωp(X̃) (resp. Ωp(Xs)) be the space of holomorphic p-form
on X̃ (resp.Xs). Freitag and Pommerening [50] showed that if g > 1, then the
restriction map

Ωp(X̃) −→ Ωp(Xs)

is an isomorphism for p < dimC X̃ = g(g+1)
2 . Since the singular part of Ag is at least

codimension 2 for g > 1, we have an isomorphism

Ωp(X̃) ∼= Ωp(Hg)
Γg .

Here Ωp(Hg)
Γg denotes the space of Γg-invariant holomorphic p-forms on Hg. Let

Sym2(Cg) be the symmetric power of the canonical representation of GL(g,C) on
Cn. Then we have an isomorphism

(C.2) Ωp(Hg)
Γg −→

[
Γg,

p∧
Sym2(Cg)

]
.

Theorem C.2. [140] Let ρα be the irreducible representation of GL(g,C) with
highest weight

(g + 1, · · · , g + 1, g − α, · · · , g − α)

such that corank(ρα) = α for 1 ≤ α ≤ g. If α = −1, we let ρα = (g + 1, · · · , g + 1).
Then

Ωp(Hg)
Γg =

{
[Γg, ρα], if p = g(g+1)

2 − α(α+1)
2

0, otherwise.

Remark C.3. If 2α > g, then any f ∈ [Γg, ρα] is singular. Thus if p < g(3g+2)
8 ,

then any Γg-invariant holomorphic p-form on Hg can be expressed in terms of vector
valued theta series with harmonic coefficients. It can be shown with a suitable mod-
ification that the just mentioned statement holds for a sufficiently small congruence
subgroup of Γg.

Thus the natural question is to ask how to determine the Γg-invariant holomor-

phic p-forms on Hg for the nonsingular range
g(3g + 2)

8
≤ p ≤ g(g + 1)

2
. Weissauer

[142] answered the above question for g = 2. For g > 2, the above question is
still open. It is well know that the vector space of vector valued modular forms
of type ρ is finite dimensional. The computation or the estimate of the dimension
of Ωp(Hg)

Γg is interesting because its dimension is finite even though the quotient
space Ag is noncompact.

Finally we will mention the results due to Weisauer [141]. We let Γ be a con-
gruence subgroup of Γ2. According to Theorem C.2, Γ-invariant holomorphic forms
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in Ω2(H2)
Γ are corresponded to modular forms of type (3,1). We note that these

invariant holomorphic 2-forms are contained in the nonsingular range. And if these
modular forms are not cusp forms, they are mapped under the Siegel Φ-operator to
cusp forms of weight 3 with respect to some congruence subgroup ( dependent on Γ )
of the elliptic modular group. Since there are finitely many cusps, it is easy to deal
with these modular forms in the adelic version. Observing these facts, he showed
that any 2-holomorphic form on Γ\H2 can be expressed in terms of theta series with
harmonic coefficients associated to binary positive definite quadratic forms. More-
over he showed that H2(Γ\H2,C) has a pure Hodge structure and that the Tate
conjecture holds for a suitable compactification of Γ\H2. If g ≥ 3, for a congruence
subgroup Γ of Γg it is difficult to compute the cohomology groups H∗(Γ\Hg,C)
because Γ\Hg is noncompact and highly singular. Therefore in order to study their
structure, it is natural to ask if they have pure Hodge structures or mixed Hodge
structures.

Appendix D. Singular Jacobi Forms

In this section, we discuss the notion of singular Jacobi forms. First of all we
define the concept of Jacobi forms.

Let ρ be a rational representation of GL(g,C) on a finite dimensional complex
vector space Vρ. Let M ∈ R(h,h) be a symmetric half-integral semi-positive definite
matrix of degree m. The canonical automorphic factor

Jρ,M : GJ ×Hg,h −→ GL(Vρ)

for GJ on Hg,h is given as follows :

Jρ,M((g, (λ, µ;κ)), (τ, z)) = e2π i tr(M(z+λ τ+µ)(Cτ+D)−1C t(z+λ τ +µ))

× e−2π i tr(M(λ τ tλ+2λ tz+κ+µ tλ))ρ(C τ +D),

where g =

(
A B
C D

)
∈ Sp(2g,R), (λ, µ;κ) ∈ H

(g,h)
R and (τ, z) ∈ Hg,h. We refer to

[152] for a geometrical construction of Jρ,M.

Let C∞(Hg,h, Vρ) be the algebra of all C∞ functions on Hg,h with values in Vρ.
For f ∈ C∞(Hg,h, Vρ), we define

(f |ρ,M[(g, (λ, µ;κ))]) (τ, z) = Jρ,M((g, (λ, µ;κ)), (τ, z))−1

f
(
g ·τ, (z + λ τ + µ)(C τ +D)−1

)
,

where g =

(
A B
C D

)
∈ Sp(2g,R), (λ, µ;κ) ∈ H

(g,h)
R and (τ, z) ∈ Hg,h.

Definition D.1. Let ρ and M be as above. Let

H
(g,h)
Z :=

{
(λ, µ;κ) ∈ H

(g,h)
R | λ, µ, κ integral

}
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be the discrete subgroup of H
(g,h)
R . A Jacobi form of index M with respect to ρ

on a subgroup Γ of Γg of finite index is a holomorphic function f ∈ C∞(Hg,h, Vρ)
satisfying the following conditions (A) and (B):

(A) f |ρ,M[γ̃] = f for all γ̃ ∈ Γ̃ := Γ⋉H
(g,h)
Z .

(B) For each M ∈ Γg, f |ρ,M[M ] has a Fourier expansion of
the following form :

(f |ρ,M[M ])(τ, z) =
∑

T= tT≥0
half-integral

∑
R∈Z(g,h)

c(T,R) · e
2πi
λΓ

tr(Tτ) · e2πi tr(Rz)

with λΓ(̸= 0) ∈ Z and c(T,R) ̸= 0 only if

(
1
λΓ
T 1

2R
1
2
tR M

)
≥ 0.

If g ≥ 2, the condition (B) is superfluous by Köcher principle (cf. [179, Lemma
1.6]). We denote by Jρ,M(Γ) the vector space of all Jacobi forms of index M with
respect to ρ on Γ. Ziegler (cf. [37, Theorem 1.1] or [179, Theorem 1.8]) proves that
the vector space Jρ,M(Γ) is finite dimensional. In the special case ρ(A) = (det(A))k

with A ∈ GL(g,C) and a fixed k ∈ Z, we write Jk,M(Γ) instead of Jρ,M(Γ) and
call k the weight of the corresponding Jacobi forms. For more results about Jacobi
forms with g > 1 and h > 1, we refer to [147, 149, 150, 152, 159, 179]. Jacobi forms
play an important role in lifting elliptic cusp forms to Siegel cusp forms of degree
2g.

Without loss of generality we may assume that M is positive definite. For
simplicity, we consider the case that Γ is the Siegel modular group Γg of degree g.

Let g and h be two positive integers. We recall that M is a symmetric positive
definite, half-integral matrix of degree h. We let

Pg := {Y ∈ R(g,g) |Y = tY > 0}

be the open convex cone of positive definite matrices of degree g in the Euclidean

space R
g(g+1)

2 . We define the differential operator Mg,h,M on Pg ×R(h,g) defined by

(D.1) Mg,h,M := det (Y ) · det
(
∂

∂Y
+

1

8π

t( ∂

∂V

)
M−1

(
∂

∂V

))
,

where

Y = (yµν) ∈ Pg, V = (vkl) ∈ R(h,g),
∂

∂Y
=

(
1 + δµν

2

∂

∂yµν

)
and

∂

∂V
=

(
∂

∂vkl

)
.

We note that this differential operator Mg,h,M generalizes the Maass operator
Mg (see Formula (C.1)).
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The author [153] characterized singular Jacobi forms as follows :

Theorem D.2. Let f ∈ Jρ,M(Γg) be a Jacobi form of index M with respect to a
finite dimensional rational representation ρ of GL(g,C). Then the following condi-
tions are equivalent :

(1) f is a singular Jacobi form.
(2) f satisfies the differential equation Mg,h,Mf = 0.

Theorem D.3. Let ρ be an irreducible finite dimensional representation of
GL(g,C). Then there exists a nonvanishing singular Jacobi form in Jρ,M(Γg) if
and only if 2k(ρ) < g + h. Here k(ρ) denotes the weight of ρ.

For the proofs of the above theorems we refer to Theorems 4.1 and 4.5 in [153].

Exercise D.4. Compute the eigenfunctions and the eigenvalues ofMg,h,M (cf. [153,
pp. 2048–2049]).

Now we consider the following group GL(g,R)⋉H(g,h)
R equipped with the mul-

tiplication law

(A, (λ, µ, κ)) ∗ (B, (λ′, µ′, κ′))
= (AB, (λB + λ′, µ tB−1 + µ′, κ+ κ′ + λB tµ′ − µ tB−1 tλ′)),

where A,B ∈ GL(g,R) and (λ, µ, κ), (λ′, µ′, κ′) ∈ H
(g,h)
R . We observe that GL(g,R)

acts on H
(g,h)
R on the right as automorphisms. And we have the canonical action of

GL(g,R)⋉H
(g,h)
R on Pg × R(h,g) defined by

(D.2) (A, (λ, µ, κ)) ◦ (Y, V ) := (AY tA, (V + λY + µ) tA),

where A ∈ GL(g,R), (λ, µ, κ) ∈ H
(g,h)
R and (Y, V ) ∈ Pg × R(h,g).

Lemma D.5. The differential operator Mg,h,M defined by the formula (D.1) is
invariant under the action (D.2) of GL(g,R)⋉

{
(0, µ, 0) | µ ∈ R(h,g)

}
.

Proof. It follows immediately from the direct calculation.

We have the following natural questions.

Problem D.6. Develop the invariant theory for the action of GL(g,R)⋉H(g,h)
R on

Pg × R(h,g). We refer to [169, 172] for related topics.

Problem D.7. Discuss the application of the theory of singular Jacobi forms to
the geometry of the universal abelian variety as that of singular modular forms to
the geometry of the Siegel modular variety (see Appendix C).
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Appendix E. Stable Jacobi Forms

Throughout this appendix we put

Γg := Sp(2g,Z) and Γg,h := Γg ⋉H
(g,h)
Z .

For a commutative ring R and an integer m, we denote by Sm(R) the set of all
m×m symmetric matrices with entries in R.

We know that the Siegel-Jacobi space

Hg,h = GJ/KJ

is a non-symmetric homogeneous space. Here

KJ = {(k, (0, 0;κ)) | k ∈ U(g), κ ∈ Sh(R)}

is a subgroup of GJ . Let gJ be the Lie algebra of the Jacobi group GJ . Then gJ

has a decomposition
gJ = kJ + pJ ,

where

kJ =

{((
a b

−b a

)
, (0, 0;κ)

) ∣∣∣∣ a+ ta = 0, b ∈ Sg(R), κ ∈ Sh(R)
}

and

pJ =

{((
a b
b −a

)
, (P,Q; 0)

) ∣∣∣∣ a, b ∈ Sg(R), P,Q ∈ C(h,g)

}
.

We observe that kJ is the Lie algebra of KJ . The complexification pJC := p⊗R C of
pJ has a decomposition

pJC = pJ+ + pJ−,

where

pJ+ =

{((
X −iX

−iX −X

)
, (P,−iP ; 0)

) ∣∣∣∣ X ∈ Sg(C), P ∈ C(h,g)

}
.

and

pJ− =

{((
X −iX

−iX −X

)
, (P,−iP ; 0)

) ∣∣∣∣ X ∈ Sg(C), P ∈ C(h,g)

}
.

We define a complex structure IJ on the tangent space pJ of Hg,h at (iIg, 0) by

IJ
((

a b
b −a

)
, (P,Q; 0)

)
:=

((
b −a

−a −b

)
, (Q,−P ; 0)

)
.

Identifying R(h,g) × R(h,g) with C(h,g) via

(P,Q; 0) 7−→ i P +Q, P,Q ∈ R(h,g),
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we may regard the complex structure IJ as a real linear map

IJ(X + i Y,Q+ i P ) = (−Y + iX,−P + iQ),

where X + i Y ∈ Sg(R), Q + i P ∈ C(h,g). IJ extends complex linearly on the
complexification pJC. With respect to this complex structure IJ , we may say that a
function f on Hg,h is holomorphic if and only if ξf = 0 for all ξ ∈ pJ−.

Since the space Hg,h is diffeomorphic to the homogeneous space GJ/KJ , we
may lift a function f on Hg,h with values in Vρ to a function Φf on GJ with values
in Vρ in the following way. We define the lifting

(E.1) Lρ,M : F(Hg,h, Vρ) −→ F(GJ , Vρ), Lρ,M(f) := Φf

by

Φf (x) : = (f |ρ,M[x])(iIg, 0)

= Jρ,M(x, (iIg, 0)) f(x · (iIg, 0)),

where x ∈ GJ and F(Hg,h, Vρ) (resp. F(G
J , Vρ)) denotes the vector space consisting

of functions on Hg,h (resp. G
J) with values in Vρ.

We see easily that the vector space Jρ,M(Γg) is isomorphic to the space
Aρ,M(Γg,h) of smooth functions Φ on GJ with values in Vρ satisfying the following
conditions:

(1a) Φ(γx) = Φ(x) for all γ ∈ ΓJ and x ∈ GJ .
(1b) Φ(x r(k, κ)) = e2πi σ(Mκ)ρ(k)−1Φ(x) for all x ∈ GJ , r(k, κ) ∈ KJ .
(2) Y −Φ = 0 for all Y − ∈ pJ−.
(3) For all M ∈ Sp(2g,R), the function ψ : GJ −→ Vρ defined by

ψ(x) := ρ(Y −
1
2 ) Φ(Mx), x ∈ GJ

is bounded in the domain Y ≥ Y0. Here x · (iIg, 0) = (τ, z) with τ =
X + i Y, Y > 0.

Clearly Jcusp
ρ,M (Γg) is isomorphic to the subspace A0

ρ,M(Γg,h) of Aρ,M(Γg,h) with
the condition (3+) that the function g 7−→ Φ(g) is bounded.

LetM be a fixed positive definite symmetric half-integral matrix of degree h. Let
ρ∞ := (ρn) be a stable representation of GL(∞,C). That is, for each n ∈ Z+, ρn is
a finite dimensional rational representation of GL(n,C) and ρ∞ is compatible with
the embeddings αkl : GL(k,C) −→ GL(l,C) ( k < l ) defined by

αkl(A) :=

(
A 0
0 Il−k

)
, A ∈ GL(k,C), k < l.
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For two positive integers m and n, we put

GJ
n,m := Sp(2n,R)⋉H

(n,m)
R .

For k, l ∈ Z+ with k < l, we define the mapping Φl,k,M of Aρl,M(Γl,m) into the
functions on GJ

k,m by

(E.2) (Φl,k,MF ) (x) := JM,ρk
(x, (iIk, 0)) lim

t−→∞
JM,ρl

(xt, (iIl, 0))
−1F (xt),

where F ∈ Aρl,M(ΓJ
l,m), x = (M, (λ, µ;κ)) ∈ GJ

k,m withM =

(
A B
C D

)
∈ Sp(2k,R)

and

xt :=



A 0 B 0
0 t1/2Il−k 0 0
C 0 D 0
0 0 0 t−1/2Il−k

 , ( (λ, 0), (µ, 0);κ)

 ∈ GJ
l,h.

Proposition E.1. The limit (E.2) always exists and the image of Aρl,M(Γl,h) under
Φl,k,M is contained in Aρk,M(Γk,h). Obviously the mapping

Φl,k,M : Aρl,M(ΓJ
l,h) −→ Aρk,M(Γk,h)

is a linear mapping.

The mapping Φl,k,M is called the Siegel-Jacobi operator. For any g ∈ Z+, we
put

(E.3) Ag,M :=
⊕
ρ

Aρ,M(Γg,h),

where ρ runs over all isomorphism classes of irreducible rational representations of
GL(g,C). For g = 0, we set A0,M := C.

For each g ∈ Z+, we put

(E.4) A∗g,M :=
⊕
ρ∗

A(ρ∗,M),

where ρ∗ runs over all isomorphism classes of irreducible rational representations of
GL(g,C) with highest weight λ(ρ∗) ∈ (2Z)g. It is obvious that if k < l, then the
Siegel-Jacobi operator Φl,k,M maps Al,M ( resp. A∗l,M ) into Ak,M ( resp.A∗k,M ).

We let

(E.5) A∞,M := lim←−
k

Ak,M and A∗∞,M := lim←−
k

A∗k,M

be the inverse limits of (Ak,M, Φl,k,M ) and (A∗k,M, Φl,k,M ) respectively.
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Proposition E.2. A∞,M has a commutative ring structure compatible with the
Siegel-Jacobi operators. Obviously A∗∞,M is a subring of A∞,M.

For a stable irreducible representation ρ∞ = (ρg) of GL(∞,C), we define

(E.6) Aρ∞,M := lim←−
g

Aρg,M(Γg,h).

Proposition E.3. We have

A∞,M =
⊕
ρ∞

Aρ∞,M,

where ρ∞ runs over all isomorphism classes of stable irreducible representations of
GL(∞,C).

Definition E.4. Elements in A∞,M are called stable automorphic forms on GJ
∞,h of

index M and elements of A∗∞,M are called even stable automorphic forms on GJ
∞,h

of index M.

For g ≥ 1, we define

(E.7) Ag :=
⊕
ρ

⊕
M

Aρ,M(Γg,h),

where ρ runs over all isomorphism classes of irreducible rational representations of
GL(g,C) and M runs over all equivalence classes of positive definite symmetric,
half-integral matrices of any degree ≥ 1. We set A0 := C.

For g ≥ 1, we also define

(E.8) A∗g :=
⊕
ρ∗

⊕
M

Aρ∗,M(Γg,h),

where ρ∗ runs over all isomorphism classes of irreducible rational representations of
GL(g,C) with highest weight λ(ρ∗) ∈ (2Z)g and M runs over all equivalence classes
of positive definite symmetric half-integral matrices of any degree ≥ 1.

Let ρ∞ = (ρg) be a stable irreducible rational representation of GL(∞,C). For
each irreducible rational representation ρg of GL(g,C) appearing in ρ∞, we put

(E.9) A(ρg; ρ∞) :=
⊕
M

Aρg,M(Γg,h),

where M runs over all equivalence classes of positive definite symmetric half-
integral matrices of any degree ≥ 1. Clearly the Siegel-Jacobi operator Φl,k :=⊕

M Φl,k,M ( k < l ) maps A(ρl; ρ∞) into A(ρk; ρ∞).

Using the Siegel-Jacobi operators, we can define the inverse limits

(E.10) A(ρ∞) := lim←−
g

A(ρg; ρ∞), A∞ := lim←−
g

Ag and A∗∞ := lim←−
g

A∗g.



696 Jae-Hyun Yang

Theorem E.5.
A∞ =

⊕
ρ∞

A(ρ∞),

where ρ∞ runs over all equivalence classes of stable irreducible representations of
GL(∞,C).

Let ρ and M be the same as in the previous sections. For positive integers r
and g with r < g, we let ρ(r) : GL(r,C) −→ GL(Vρ) be a rational representation of
GL(r,C) defined by

ρ(r)(a)v := ρ

((
a 0
0 Ig−r

))
v, a ∈ GL(r,C), v ∈ Vρ.

The Siegel-Jacobi operator Ψg,r : Jρ,M(Γg) −→ Jρ(r),M(Γr) is defined by

(E.11) (Ψg,rf)(τ, z) := lim
t→∞

f

((
τ 0
0 itIg−r

)
, (z, 0)

)
,

where f ∈ Jρ,M(Γg), τ ∈ Hr and z ∈ C(h,r). It is easy to check that the above

limit always exists and the Siegel-Jacobi operator is a linear mapping. Let V
(r)
ρ be

the subspace of Vρ spanned by the values { (Ψg,rf)(τ, z) | f ∈ Jρ,M(Γg), (τ, z) ∈
Hr × C(h,r) }. Then V (r)

ρ is invariant under the action of the group{(
a 0
0 Ig−r

)
: a ∈ GL(r,C)

}
∼= GL(r,C).

We can show that if V
(r)
ρ ̸= 0 and (ρ, Vρ) is irreducible, then (ρ(r), V

(r)
ρ ) is also

irreducible.

Theorem E.6. The action of the Siegel-Jacobi operator is compatible with that of
that of the Hecke operator.

We refer to [149] for a precise detail on the Hecke operators and the proof of
the above theorem.

Problem E.7. Discuss the injectivity, surjectivity and bijectivity of the Siegel-
Jacobi operator.

This problem was partially discussed by the author [149] and Kramer [78] in
the special cases. For instance, Kramer [78] showed that if g is arbitrary, h = 1
and ρ : GL(g,C) −→ C× is a one-dimensional representation of GL(g,C) defined
by ρ(a) := (det (a))k for some k ∈ Z+, then the Siegel-Jacobi operator

Ψg,g−1 : Jk,m(Γg) −→ Jk,m(Γg−1)

is surjective for k ≫ m≫ 0.



Arithmetic and Geometric Approach to the Schottky Problem 697

Theorem E.8. Let 1 ≤ r ≤ g − 1 and let ρ be an irreducible finite dimensional
representation of GL(g,C). Assume that k(ρ) > g + r + rank (M) + 1 and that k is
even. Then

Jcusp
ρ(r),M

(Γr) ⊂ Ψg,r(Jρ,M(Γg)).

Here Jcusp
ρ(r),M

(Γr) denotes the subspace consisting of all cuspidal Jacobi forms in

Jρ(r),M(Γr).

Idea of Proof. For each f ∈ Jcusp
ρ(r),M

(Γr), we can show by a direct computation that

Ψg,r(E
(g)
ρ,M(τ, z; f)) = f,

where E
(g)
ρ,M(τ, z; f) is the Eisenstein series of Klingen’s type associated with a cusp

form f. For a precise detail, we refer to [179].

Remark E.9. Dulinski [35] decomposed the vector space Jk,M(Γg) (k ∈ Z+) into
a direct sum of certain subspaces by calculating the action of the Siegel-Jacobi
operator on Eisenstein series of Klingen’s type explicitly.

For two positive integers r and g with r ≤ g − 1, we consider the bigraded ring

J
(r)
∗,∗(ℓ) :=

∞⊕
k=0

⊕
M

Jk,M(Γr(ℓ))

and

M
(r)
∗ (ℓ) :=

∞⊕
k=0

Jk,0(Γr(ℓ)) =

∞⊕
k=0

[Γr(ℓ), k],

where Γr(ℓ) denotes the principal congruence subgroup of Γr of level ℓ and M runs
over the set of all symmetric semi-positive half-integral matrices of degree h. Let

Ψr,r−1,ℓ : Jk,M(Γr(ℓ)) −→ Jk,M(Γr−1(ℓ))

be the Siegel-Jacobi operator defined by (E.11).

Problem E.10. Investigate Proj J
(r)
∗,∗(ℓ) over M

(r)
∗ (ℓ) and the quotient space

Yr(ℓ) := (Γr(ℓ)⋉ (ℓZ)2)\(Hr × Cr)

for 1 ≤ r ≤ g − 1.

The difficulty to this problem comes from the following facts (A) and (B) :

(A) J
(r)
∗,∗(ℓ) is not finitely generated over M

(r)
∗ (ℓ).

(B) Jcusp
k,M (Γr(ℓ)) ̸= kerΨr,r−1,ℓ in general.

These are the facts different from the theory of Siegel modular forms. We
remark that Runge (cf. [119, pp. 190–194]) discussed some parts about the above
problem.
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Math., 46, Birkhäuser Boston, Inc., Boston, MA, 1984, 93–113.

[50] E. Freitag and K. Pommerening, Reguläre Differentialformen des Körpers der
Siegelschen Modulfunktionen, J. Reine Angew. Math., 331(1982), 207–220.
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[81] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear system, Ann. Sci.
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