• Title/Summary/Keyword: Siderophore production

Search Result 106, Processing Time 0.041 seconds

Plant growth promoting rhizobacteria that decrease chromium toxicity in Brassica juncea

  • M. Rajkumar;Lee, Kui-Jae;Park, Jun-Sik;Park, In-Suk;Lee, Wang-Hui
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.45-45
    • /
    • 2003
  • The aim of the present study was to assess the importance of siderophore producing rhizobacteria on the growth of Brassica juncea under chromium stress. Pseudomonas sp. (A4) produced an iron chelating substance siderophores in iron deficient medium. Under chromium stress condition Pseudomonassp. (A4) markedly increased the root and shoot length and also biomass of Brassica juncea as compared to Pseudomonas sp. (A3). This plantgrowth promotion has been related to the microbial production of siderophore.

  • PDF

Plant growth promoting rhizobacteria that decrease chromium toxicity in Brassica juncea

  • M. Rajkumar;Lee, Kui-Jae;Lee, Wang-Hyu;R. Nagendran
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10a
    • /
    • pp.20-29
    • /
    • 2003
  • The aim of the present study isto assess the importance of siderophore producing rhizosphere bacteria on the growth of Brassica junceaunder chromium stress. Pseudomonassp. (A4) produced an iron chelating substance siderophores in iron deficient medium. under chromium stress condition Pseudomonassp. (A4) markedly increased the root and shoot length and also biomass of Brassica juncea as compared to Pseudomonas sp. (A3). This plant growth promotion has been related to the microbial production of siderophore.

  • PDF

Proteomic Analysis of the GacA Response Regulator in Pseudomonas chlororaphis O6

  • Anderson, Anne J.;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.162-169
    • /
    • 2018
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulatory system of many traits relevant to the plant probiotic nature of this bacterium. The work in this paper elucidates proteins using proteomics approach in P. chlororaphis O6 under the control of the cytoplasmic regulatory protein, GacA. A gacA mutant of P. chlororaphis O6 showed loss in production of phenazines, acyl homoserine lactones, hydrogen cyanide, and protease, changes that were associated with reduced in vitro antifungal activity against plant fungal pathogens. Production of iron-chelating siderophore was significantly enhanced in the gacA mutant, also paralleling changes in a gacS mutant. However, proteomic analysis revealed proteins (13 downregulated and 7 upregulated proteins in the mutant compared to parental strain) under GacA control that were not apparent by a proteomic study of a gacS mutant. The putative identity of the downregulated proteins suggested that a gacA mutant would have altered transport potentials. Notable would be a predicted loss of type-VI secretion and PEP-dependent transport. Study of mutants of these GacA-regulated proteins will indicate further the features required for probiotic potential in this rhizobacterium.

The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6

  • Oh, Sang A;Kim, Ji Soo;Park, Ju Yeon;Han, Song Hee;Dimkpa, Christian;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.323-329
    • /
    • 2013
  • The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentially regulated proteins had unknown roles. Changes in levels of proteins in P. chlororaphis O6 rpoS mutant were associated with iron metabolism, and protection against oxidative stress. The P. chlororaphis O6 rpoS mutant showed increased production of a pyoverdine-like siderophore, indole acetic acid, and altered isozyme patterns for peroxidase, catalase and superoxide dismutase. Consequently, sensitivity to hydrogen peroxide exposure increased in the P. chlororaphis O6 rpoS mutant, compared with the wild type. Taken together, RpoS exerted regulatory control over factors important for the habitat of P. chlororaphis O6 in soil and on root surfaces. The properties of several of the proteins in the RpoS regulon are currently unknown.

The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae

  • Kim, Jieun;Mannaa, Mohamed;Kim, Namgyu;Lee, Chaeyeong;Kim, Juyun;Park, Jungwook;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.412-425
    • /
    • 2018
  • The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to $H_2O_2$, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to $H_2O_2$ induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.

Antifungal Activity of Bacillus sp. GJ-1 Against Phytophthora capsici (Bacillus sp. GJ-1의 Phytophthora capsici에 대한 항진균활성)

  • Lee, Gun-Joo;Han, Joon-Hee;Shin, Jong-Hwan;Kim, Heung Tae;Kim, Kyoung Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Phytophthora capsici is one of major limiting factors in production of pepper and other important crops worldwide by causing foliage blight and rot on fruit and root. Increased demand for the replacement of fungicides has led to searching a promising strategy to control the fungal diseases. To meet eco-friendly agriculture practice, we isolated microorganisms and assessed their beneficial effects on plant health and disease control efficacy. A total of 360 bacterial strains were isolated from rhizosphere soil of healthy pepper plants, and categorized to 5 representative isolates based on colony morphology. Among the 5 bacterial strains (GJ-1, GJ-4, GJ-5, GJ-11, GJ-12), three bacterial strains (GJ-1, GJ-11, GJ-12) presented antifungal activity against P. capsici in an fungal inhibition assay. In phosphate solubilization and siderophore production, the strain GJ-1 was more effective than others. The strain GJ-1 was identified as Bacillus sp. using 16S rDNA analysis. Bacillus sp. GJ-1 was also found to be effective in inhibiting other plant pathogenic fungi, including Rhizoctonia solani, Pythium ultimum and Fusarium solani. Therefore, the Bacillus sp. GJ-1 can serve as a biological control agent against fungal plant pathogens.

Isolation and Characteristics of Bacteria Showing Biocontrol and Biofertilizing Activities (생물방제 및 생물비료 활성을 가지는 세균의 분리 및 특성)

  • Jung, Ho-Il;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Yong-Gyun;Kim, Hong-Sung;Lee, Cnung-Yeol;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1682-1688
    • /
    • 2007
  • To develop multifunctional microbial inoculant, microorganisms with antagonistic activity and biofertilizing activity were screened. Pantoea agglomerans and Bacillus megaterium from our laboratory culture collection, and strain MF12 from soil near poultry farm in Miryang were selected. On the basis of morphological, physiological studies and 16S rDNA sequence analysis, isolate MF12 was identified as the Bacillus pumilis. Three strains were studied for insoluble phosphate solubilization, indole-3-acetic acid (IAA) and siderophore production, ammonification ability, hydrolytic enzyme production and antifungal activity against phytopathogenic fungi. P. agglomerans did not produce any visible clear zone on agar plate containing 0.5% $Ca_3(PO_4){_2}$ as a sole phosphorus source. However, this strain could solubilize insoluble phosphate in liquid medium. All strains produced IAA ranged from $3{\sim}639{\mu}g/ml$ depending on culture time and had ammonification ability. Among three strains, only P. agglomerans produced siderophore. P. agglomerans produced pectinase and lipase, B. megaterium produced amylase, protease and lipase while B. pumilis produced protease and lipase. P. agglomerans showed antifungal activities against phytopathogenic fungi, Fusarium oxysporum and Colletotrichum gloeosporioides. B. pumilis showed antifungal activities against Botrytis cinerea, Sclerotinia sclerotiorum and Phythium ultimum.

Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

  • Etminani, Faegheh;Harighi, Behrouz
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.208-217
    • /
    • 2018
  • In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

Isolation and Characterization of Indole-3-acetic acid- and 1-aminocylopropane-1-carboxylyic Acid Deaminase-producing Bacteria Related to Environmental Stress (환경스트레스와 관련된 indole-3-acetic acid 및 1-aminocylopropane-1-carboxylyic acid deaminase 활성을 갖는 박테리아의 분리와 특성 연구)

  • Kim, Hee Sook;Kim, Ji-Youn;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.390-400
    • /
    • 2019
  • In this study, strains isolated from soil samples collected from Busan, Changwon, and Jeju Island were examined to verify their abilities of phosphate solubilization and nitrogen fixation, production of indole-3-acetic acid (IAA), siderophore, and 1-aminocylopropane-1-carboxylyic acid (ACC) deaminase in order to select strains that promote plant growth and play a role in biocontrol of pests or pathogens. According to the results of this study, most of the isolated strains were found to have ability of phosphate solubilization, nitrogen fixation, IAA production, siderophore production, and production of ACC deaminase. These isolated strains might help plant growth by directly improving absorption of nutrients essential for phosphate solubilization and nitrogen fixation. In addition, they can promote plant growth and control resistance to plant diseases through extracellular enzyme activity and antifungal activity. In addition, most of the selected strains were found to survive in various environmental conditions such as temperature, salinity, and pH. Therefore, Pseudomonas plecoglossicida ANG14, Pseudarthrobacter equi ANG28, Beijerinckia fluminensis ANG34, and Acinetobacter calcoaceticus ANG35 were finally selected through a comparative advantage analysis to suggest their potential as novel biological agents. Further studies are necessary in order to prove their efficacy as novel biological agents through formulation and optimization of effective microorganisms, their preservation period, and crop cultivation tests.

Antibiotic Production of Pseudomonas otitidis PS and Mode of Action (Pseudomonas otitidis PS 균주의 항생물질 생산과 작용 기작)

  • Ahn, Kyung-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.40-44
    • /
    • 2018
  • An isolate capable of inhibiting the growth of gram-positive bacteria was obtained from the soil of Mushim stream, Cheongju. The isolate was identified as Pseudomonas otitidis PS by 16S rRNA gene sequence analysis. P. otitidis PS produced antibiotics as a secondary metabolite when cultured in 1% soybean meal with 0.5% glucose. The maximum yield was about 0.1%. The antibiotic substance of P. otitidis PS extracted using ethyl acetate displayed a minimum inhibitory concentration of $2{\mu}g/ml$ for Staphylococcus aureus KCTC 1261. The antibiotic substance produced an orange halo on chrome azurol S agar due to siderophore activity. Growth inhibition was decreased when the iron was depleted. Since the antibiotic activity was lost upon the addition of the reducing agent ascorbic acid or during anaerobic culture, it was considered that antibiotic of P. otitidis PS strain exerts its bactericidal effect by the generation of reactive oxygen species.