DOI QR코드

DOI QR Code

The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6

  • Oh, Sang A (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Ji Soo (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Park, Ju Yeon (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Han, Song Hee (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Dimkpa, Christian (Department of Biology, Utah State University) ;
  • Anderson, Anne J. (Department of Biology, Utah State University) ;
  • Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • Received : 2013.01.22
  • Accepted : 2013.03.03
  • Published : 2013.09.01

Abstract

The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentially regulated proteins had unknown roles. Changes in levels of proteins in P. chlororaphis O6 rpoS mutant were associated with iron metabolism, and protection against oxidative stress. The P. chlororaphis O6 rpoS mutant showed increased production of a pyoverdine-like siderophore, indole acetic acid, and altered isozyme patterns for peroxidase, catalase and superoxide dismutase. Consequently, sensitivity to hydrogen peroxide exposure increased in the P. chlororaphis O6 rpoS mutant, compared with the wild type. Taken together, RpoS exerted regulatory control over factors important for the habitat of P. chlororaphis O6 in soil and on root surfaces. The properties of several of the proteins in the RpoS regulon are currently unknown.

Keywords

References

  1. Beyeler, M., Keel, C., Michaux, P. and Haas, D. 1999. Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol. Ecol. 28:225-233. https://doi.org/10.1111/j.1574-6941.1999.tb00578.x
  2. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  3. Costacurta, A. and Vanderleyden, J. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21:1-18. https://doi.org/10.3109/10408419509113531
  4. Dimkpa, C. O., McLean, J. E., Britt, D. W. and Anderson, A. J. 2011. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology 6:635-642.
  5. Dimkpa, C. O., Zeng, J., McLean, J. E., Britt, D. W., Zhan, J. and Anderson, A. J. 2012 . Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium, Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl. Environ. Microbiol. 78:1404-1410. https://doi.org/10.1128/AEM.07424-11
  6. Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant. Pathol. 7:463-472. https://doi.org/10.1111/j.1364-3703.2006.00352.x
  7. Heeb, S., Valverde, C., Gigot-bonnefoy, C. and Haas, D. 2005. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol. Lett. 243:251-258. https://doi.org/10.1016/j.femsle.2004.12.008
  8. Hishinuma, S., Yuki, M., Fujimura, M. and Fukumori, F. 2006. OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida. Environ. Microbiol. 8:2115-2124. https://doi.org/10.1111/j.1462-2920.2006.01088.x
  9. Jung, I. L. and Kim, I. G. 2003. Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem. Biophys. Res. Commun. 301:915-922. https://doi.org/10.1016/S0006-291X(03)00064-0
  10. Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137-143. https://doi.org/10.1016/j.gene.2003.10.004
  11. Kang, B. R., Han, S. H., Zdor, R. E., Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim, Y. C. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 required phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586-593.
  12. Kang, B. R., Yang, K. Y., Cho, B. H., Han, T. H., Kim, I. S., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase, GacS. Curr. Microbiol. 52:473-475. https://doi.org/10.1007/s00284-005-0427-x
  13. Katsuwon, J. and Anderson, A. J. 1990. Catalase and superoxide dismutase of root colonizing saprophytic pseudomonads. Appl. Environ. Microbiol. 56: 3576-3582.
  14. Kim, H. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2007. Transcript accumulation from the rpoS gene encoding a stationary-phase sigma factor in Pseudomonas chlororaphis O6 is regulated by the polyphosphate kinase gene. Curr. Microbiol. 54:219-223. https://doi.org/10.1007/s00284-006-0361-6
  15. Kim, M. S., Kim, Y. C. and Cho, B. H. 2004. Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant Biol. 6:105-108. https://doi.org/10.1055/s-2004-817803
  16. Kim, Y. C., Kim, C. S., Cho, B. H. and Anderson, A. J. 2004. Major Fe-superoxide dismutase (FeSOD) activity in Pseudomonas putida is essential for survival under conditions of oxidative stress during microbial challenge and nutrient limitation. J. Microbiol. Biotechnol. 14:859-862.
  17. Kim, Y. C., Leveau, J., Gardener, B. B. M., Pierson, E. J., Pierson III, L. S. and Ryu, C.-M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555. https://doi.org/10.1128/AEM.01867-10
  18. Kim, Y. C., Miller, C. and Anderson, A. J. 2000. Superoxide dismutase activity in Pseudomonas putida affects utilization of sugars and growth on root surfaces. Appl. Environ. Microbiol. 66:1460-1467. https://doi.org/10.1128/AEM.66.4.1460-1467.2000
  19. Lan, L., Murray, T. S., Kazmierczak, B. I. and He, C. 2010. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Mol. Microbiol. 75:76-91. https://doi.org/10.1111/j.1365-2958.2009.06955.x
  20. MacAdam, J. W., Sharp, R. E. and Nelson, C. J. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. II. Spatial distribution of apoplastic peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol. 99:879-885. https://doi.org/10.1104/pp.99.3.879
  21. Miller, C. D., Kim, Y. C. and Anderson, A. J. 2001. Competitiveness in root colonization by Pseudomonas putida requires the rpoS gene. Can. J. Microbiol. 47:41-48. https://doi.org/10.1139/cjm-47-1-41
  22. Nunez, C., Esteve-Nunez, A., Giometti, C., Tollaksen, S., Khare, T., Lin, W., Lovley, D. R. and Methe, B. A. 2006. DNA microarray and proteomic analyses of the rpoS regulon in Geobacter sulfurreducens. J. Bacteriol. 188:2792-2800. https://doi.org/10.1128/JB.188.8.2792-2800.2006
  23. Oakley, B. R., Kirsch, D. R. and Morris, N. R. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105:361-363. https://doi.org/10.1016/0003-2697(80)90470-4
  24. Oh, S. A. 2012. Role of a global regulator RpoS involved in survival during root colonization in Pseudomonas chlororaphis O6. Ph. D thesis, Chonnam National University, Korea.
  25. Osiriphun, Y., Wongtrakoongate, P., Sanongkiet, S., Suriyaphol, P., Thongboonkerd, V. and Tungpardabkul, S. 2009. Identification and characterization of RpoS regulon and RpoS-dependent promoters in Burkholderia pseudomallei. J. Proteome Res. 8:3118-3131. https://doi.org/10.1021/pr900066h
  26. Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J.-C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
  27. Patten, C. L. and Glick, B. R. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68:3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  28. Ryu, C.-M., Kang, B. R., Han, S. H., Cho, S. M., Kloepper, J. W., Anderson, A. J. and Kim, Y. C. 2007. Tobacco cultivars vary in induction of systemic resistance against Cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its gacS mutant. Eur. J. Plant Pathol. 119: 383-390. https://doi.org/10.1007/s10658-007-9168-y
  29. Saleh, S. S. and Glick, B. R. 2001. Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can. J. Microbiol. 47:698-705. https://doi.org/10.1139/w01-072
  30. Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M. and Loper, J. E. 1995. The sigma factor e affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc. Natl. Acad. Sci. USA 92:12255-12259. https://doi.org/10.1073/pnas.92.26.12255
  31. Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68:850-858. https://doi.org/10.1021/ac950914h
  32. Spencer, M., Kim, Y. C., Ryu, C.-M., Kloepper, J. W., Yang, K. Y. and Anderson, A. J. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol. Mol. Plant Pathol. 63: 27-34. https://doi.org/10.1016/j.pmpp.2003.09.002
  33. Suh, S. J., SiloSuh, L., Woods, D. E., Hassett, D. J., West, S. H. E. and Ohman, D. E. 1999. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181:3890-3897.
  34. Sun, Y., Cheng, Z. and Glick, B. R. 2009. The presence of a 1- aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutations alters the physiology of the endophytic plant growthpromoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol. Lett. 296:131-136. https://doi.org/10.1111/j.1574-6968.2009.01625.x
  35. Tkachenko, A., Nesterova, L. and Pshenichnov, M. 2001. The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176:155-157. https://doi.org/10.1007/s002030100301
  36. Vansuyt, G., Robin, A., Briat, J.-F., Curie, C. and Lemanceau, P. 2007. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol. Plant-Microbe Interact. 20:441-447. https://doi.org/10.1094/MPMI-20-4-0441

Cited by

  1. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis vol.29, pp.2, 2016, https://doi.org/10.1007/s10534-015-9906-0
  2. RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3 vol.167, pp.3, 2016, https://doi.org/10.1016/j.resmic.2015.11.003
  3. Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6 vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.NT.02.2014.0012
  4. The Sensor Kinase GacS Negatively Regulates Flagellar Formation and Motility in a Biocontrol Bacterium, Pseudomonas chlororaphis O6 vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.NT.11.2013.0109
  5. Sublethal doses of ZnO nanoparticles remodel production of cell signaling metabolites in the root colonizer Pseudomonas chlororaphis O6 vol.3, pp.5, 2016, https://doi.org/10.1039/C6EN00135A