DOI QR코드

DOI QR Code

Isolation and Characteristics of Bacteria Showing Biocontrol and Biofertilizing Activities

생물방제 및 생물비료 활성을 가지는 세균의 분리 및 특성

  • Jung, Ho-Il (School of Applied Life Science, Pusan National University) ;
  • Kim, Keun-Ki (School of Applied Life Science, Pusan National University) ;
  • Park, Hyean-Cheal (School of Applied Life Science, Pusan National University) ;
  • Lee, Sang-Mong (School of Applied Life Science, Pusan National University) ;
  • Kim, Yong-Gyun (School of Applied Life Science, Pusan National University) ;
  • Kim, Hong-Sung (School of Applied Life Science, Pusan National University) ;
  • Lee, Cnung-Yeol (School of Bioresource Science, Pusan National University) ;
  • Son, Hong-Joo (School of Applied Life Science, Pusan National University)
  • 정호일 (부산대학교 생명응용과학부) ;
  • 김근기 (부산대학교 생명응용과학부) ;
  • 박현철 (부산대학교 생명응용과학부) ;
  • 이상몽 (부산대학교 생명응용과학부) ;
  • 김용균 (부산대학교 생명응용과학부) ;
  • 김홍성 (부산대학교 생명응용과학부) ;
  • 이충렬 (부산대학교 생명자원과학부) ;
  • 손홍주 (부산대학교 생명응용과학부)
  • Published : 2007.12.30

Abstract

To develop multifunctional microbial inoculant, microorganisms with antagonistic activity and biofertilizing activity were screened. Pantoea agglomerans and Bacillus megaterium from our laboratory culture collection, and strain MF12 from soil near poultry farm in Miryang were selected. On the basis of morphological, physiological studies and 16S rDNA sequence analysis, isolate MF12 was identified as the Bacillus pumilis. Three strains were studied for insoluble phosphate solubilization, indole-3-acetic acid (IAA) and siderophore production, ammonification ability, hydrolytic enzyme production and antifungal activity against phytopathogenic fungi. P. agglomerans did not produce any visible clear zone on agar plate containing 0.5% $Ca_3(PO_4){_2}$ as a sole phosphorus source. However, this strain could solubilize insoluble phosphate in liquid medium. All strains produced IAA ranged from $3{\sim}639{\mu}g/ml$ depending on culture time and had ammonification ability. Among three strains, only P. agglomerans produced siderophore. P. agglomerans produced pectinase and lipase, B. megaterium produced amylase, protease and lipase while B. pumilis produced protease and lipase. P. agglomerans showed antifungal activities against phytopathogenic fungi, Fusarium oxysporum and Colletotrichum gloeosporioides. B. pumilis showed antifungal activities against Botrytis cinerea, Sclerotinia sclerotiorum and Phythium ultimum.

다기능성 농업용 미생물 제제를 개발하기 위하여 생물방제 및 생물비료 활성을 가지는 미생물을 탐색하였다. 본 연구실에서 분리 및 동정된 균주가운데 Pantoea agglomerans 및 Bacillus megaterium을 실험군주로 선정하였으며, 경남 밀양에 위치하는 양계장 부근 부엽토로부터 새로운 다목적 세균 MF12를 분리하였다. 형태학적, 배양적, 생화학적 특성 및 16S rDNA 염기서열을 분석한 결과, MF12는 Bacillus pumilis로 동정되었다. 이 균주들의 불용성 인산 가용능, IAA 및 siderophore 생성능, ammonification ability, 식물병원성 진균 세포성분 분해효소 생성능 및 항진균능을 조사하였다. P. agglomerans는 고체배지에서 불용성 인산을 가용화할 수 없었으나 액체배지에서는 가용성 인산을 생성하였다. 상기 모든 균주들은 배양시간에 따라 $3{\sim}639{\mu}g/ml$의 IAA를 생성하였으며, P. agglomerans만이 siderophore를 생성하였다. 이 균주는 pectinase와 lipase를 생성하였다. B. megaterium은 amylase, pretense 및 lipase를 생성한 반면 B. pumilisr는 protease와 lipase를 생성하였다. P. agglomerans는 Fusarium oxysporum과 Colletotrichum gloeosporioides의 생육을 억제하였으며, B. pumilis는 Botrytis cinerea, Sclerotinia sclerotiorum 및 Phythium ultimum의 생육을 억제하였다.

Keywords

References

  1. Ausubel, F. A., R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman and K. Struhl. 1988. Current protocols in molecular biology. John Wiley & Sons, Inc., New York
  2. Cattelan, A. J., P. G. Hartel and J. J. Fuhrmann. 1999. Screening for plant growth promoting rhizobacteria to promotor early soybean growth. Soil Sci. Soc. Am. J. 63, 1670-1680 https://doi.org/10.2136/sssaj1999.6361670x
  3. Chang, J. W. and S. D. Kim. 1995. Bacterial sporulation and germination of biocontrol agent Bacillus subtilis YBL-7. Kor. J. Appl. Microbiol. Biotechnol. 23, 236-242
  4. Clesscerl, L. S., A. E. Greenberg and A. D. Eaton. 1998. Standard methods for the examination of water and wastewater, 20th ed. APHA-AWWA-WEF. Washington, D.C
  5. Dye, R., K. K. Pal, D. M. Bhatt and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159, 371-394 https://doi.org/10.1016/j.micres.2004.08.004
  6. Gerhardt, P., R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg and G. B. Phillips. 1981. Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.C
  7. Gupta, R., R. Singal, A. Shankar, R. Chander and R. K. Saxena. 1994. A modified plate assay for screening phosphate solubilizing microorganisms. J. Gen. Appl. Microbiol. 40, 255-260 https://doi.org/10.2323/jgam.40.255
  8. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th ed. The Williams and Wilkins Co., Baltimore
  9. Illmer, P. and F. Schinner. 1992. Solubilisation of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem. 24, 389-395 https://doi.org/10.1016/0038-0717(92)90199-8
  10. Jung, H. K., J. R. Kim, S. M. Woo and S. D. Kim. 2007. Selection of the auxin, siderophore, and cellulase-producing PGPR Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Kor. Soc. Appl. Biol. Chem. 50, 23-28
  11. Khalid, A., M. Arshad and Z. A. Zahir. 2004. Screening of plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473-480 https://doi.org/10.1046/j.1365-2672.2003.02161.x
  12. Khan, M. R. and S. M. Khan. 2001. Biomanagement of Fusarium wilt of tomato by the soil application of certain phosphate-solubilizing microorganisms. Int. J. Pest Manag. 47, 227-231 https://doi.org/10.1080/09670870110044049
  13. Kim, S. J., M. Y. Kim, B. S. Koo, S. H. Yoon, Y. S. Yeo, I. C. Park, Y. J. Kim, J. W. Kim and K. S. Whang. 2005. Isolation and phylogenetic characterization of chitinase producing oligotrophic bacteria. Kor. J. Microbiol. 41, 293-299
  14. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170, 265-270 https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  15. O'sullivan, D. and F. O'gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Mirobiol. Rev. 56, 662-676
  16. Pandey, P., S. C. Kang, C. P. Gupta and D. K. Maheshwari. 2005. Rhizosphere competent Pseudomonas areuginosa $GRC_{1}$produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr. Microbiol. 51, 303-309 https://doi.org/10.1007/s00284-005-0014-1
  17. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  18. Sessitsch, A. S., B. Reiter and G. Berg. 2004. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can. J. Microbiol. 50, 239-249 https://doi.org/10.1139/w03-118
  19. Sutra, L., J. M. Risede and L. Garden. 2000. Isolation of fluorescent pseudomonads from the rhizosphere of banana plants antagonistic towards root necrosing fungi. Lett. Appl. Microbiol. 31, 289-293 https://doi.org/10.1046/j.1472-765x.2000.00816.x
  20. Tang, Y. W. and J. Bonner. 1947. The enzymatic inactivation of indoleacetic acid I. Some characteristics of the enzyme contained in pea seedlings. Arch. Biochem. 13, 17-25
  21. Verma, S. C., J. K. Ladha and A. K. Tripathi. 2001. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91, 127-141 https://doi.org/10.1016/S0168-1656(01)00333-9

Cited by

  1. Soil Environment and Soil-borne Plant Pathogen Causing Root Rot Disease of Ginseng vol.45, pp.3, 2012, https://doi.org/10.7745/KJSSF.2012.45.3.370
  2. Screening of Multifunctional Bacteria with Biocontrol and Biofertilizing Effects vol.39, pp.2, 2011, https://doi.org/10.4489/KJM.2010.39.2.126
  3. Biocontrol with Myxococcus sp. KYC 1126 Against Anthracnose in Hot Pepper vol.27, pp.2, 2011, https://doi.org/10.5423/PPJ.2011.27.2.156