• Title/Summary/Keyword: Side Resistance

Search Result 734, Processing Time 0.028 seconds

Fatigue damage detection of CFRP using the electrical resistance change method

  • Todoroki, Akira;Mizutani, Yoshihiro;Suzuki, Yoshiro;Haruyama, Daichi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.350-355
    • /
    • 2013
  • Electrical resistance change measurements were performed, to detect fatigue damage of a quasi-isotropic CFRP and cross-ply CFRP laminates. A four-probe method was used to measure the exact electrical resistance change. A three-probe method was used to measure the electrical contact resistance change, during long cyclic loading. The specimen side surface was observed using a video-microscope to detect damage. The measured electrical resistance changes were compared with the observed damage. The results of this study show that the electrical resistance increase of the quasi-isotropic laminate was caused by a delamination crack between ${\pm}45^{\circ}$ plies. Matrix cracking caused a small electrical resistance increase of the cross-ply laminate, but the decreased electrical resistance caused by the shear-plastic deformation impedes matrix-cracking detection.

Evaluation of Corrosion Resistance of Anti-Corrosive Paint by Investigation of Diffusion Limiting Current Density (확산한계전류밀도 고찰에 의한 방청도료의 내식성평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myung-Hoon;Lee, In-Won;Park, Hyun;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.64-68
    • /
    • 2009
  • It has been observed that coated steel structures deteriorate more rapidly than the designed lifetime due to acid rain caused by air pollution, etc. Therefore, improving the corrosion resistance of anti-corrosive paint is very important in terms of safety and the economic point of view. In this study, the corrosion resistance of five kinds of anti-corrosive paints, including the Acryl, Fluorine, and Epoxy resin series, were investigated with electrochemical methods, such as corrosion potential measurements, polarization curves, diffusion limiting current density, etc. As a result, the corrosion resistance of the F101 specimen with the fluorine resin series was found to be superior to the other specimens, while E100 with the epoxy resin series also showed a somewhat good corrosion resistance. Furthermore, it was observed that the amount of water and oxygen entering the inner side of a painted film increased with an increase in immersion time, irrespective of the kind of resin series. However, the oxygen diffusion limiting current density of a specimen with good corrosion resistance was relatively decreased compared to other specimens, because of the difficulty of oxygen diffusion penetrating to the inner side of the film. Consequently it is suggested that we can qualitatively evaluate the corrosion resistance of an anti-corrosive paint by measuring the diffusion limiting current density as an electrochemical method.

Influences of Aerobic and Resistance Exercise on Health-related Problems in Cancer Patients: A review of the literature

  • Ye-Na Jeon;Jeongwoo Jeon;Jihoen Hong;Jaeho Yu;Jinseop Kim;Seong-Gil Kim;Dongyeop Lee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.79-89
    • /
    • 2023
  • Purpose : Until recently, the number of cancer patients continues to increase, and these patients have many limitations in their activities of daily living. In the republic of Korea, cancer patients are showing an increasing trend every year. Cancer disease not only significantly reduces the quality of life in individuals, but also causes various side effects if not managed. The purpose of this study was to investigate the effects of aerobic exercise and resistance exercise on health-related problems in cancer patients. Methods : This study searched for studies that applied aerobic exercise and resistance exercise to cancer patients reported in search engines (google scala, dbpia, and pubmed) from 2017 to 2022. Six randomized controlled trials and two systematic reviews and meta-analyses were used for analysis in our study. "physical activity", "exercise", "aerobic exercise", "resistance exercise", and "cancer patient" were the main search terms. The data included aerobic exercise, resistance exercise, cancer patients' muscle strength, physical strength, quality of life, and physical activity. Results : According to the eight studies that met the criteria included in this review study, it was found that aerobic exercise and resistance exercise had an effect on the increase in physical fitness, muscular strength, quality of life, and range of motion in cancer survivors. Conclusion : It was confirmed that aerobic exercise and resistance exercise are safe and effective interventions that can be applied to cancer patients without side effects. A limitation of this study is that it did not examine cancer diseases in various population groups such as the elderly and children. Therefore, in future studies, studies that consider specific details such as age, gender, type of cancer, and physical differences are needed.

Increased Sensitivity of Carbon Nanotube Sensors by Forming Rigid CNT/metal Electrode

  • Park, Dae-Hyeon;Jeon, Dong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.348-348
    • /
    • 2011
  • Carbon nanotube (CNT) field effect transistors and sensors use CNT as a current channel, of which the resistance varies with the gate voltage or upon molecule adsorption. Since the performance of CNT devices depends very much on the CNT/metal contact resistance, the CNT/electrode contact must be stable and the contact resistance must be small. Depending on the geometry of CNT/electrode contact, it can be categorized into the end-contact, embedded-contact (top-contact), and side-contact (bottom-contact). Because of difficulties in the sample preparation, the end-contact CNT device is seldom practiced. The embedded-contact in which CNT is embedded inside the electrode is desirable due to its rigidness and the low contact resistance. Fabrication of this structure is complicated, however, because each CNT has to be located under a high-resolution microscope and then the electrode is patterned by electron beam lithography. The side-contact is done by depositing CNT electrophoretically or by precipitating on the patterned electrode. Although this contact is fragile and the contact resistance is relatively high, the side-contact by far has been widely practiced because of its simple fabrication process. Here we introduce a simple method to embed CNT inside the electrode while taking advantage of the bottom-contact process. The idea is to utilize a eutectic material as an electrode, which melts at low temperature so that CNT is not damaged while annealing to melt the electrode to embed CNT. The lowering of CNT/Au contact resistance upon annealing at mild temperature has been reported, but the electrode in these studies did not melt and CNT laid on the surface of electrode even after annealing. In our experiment, we used a eutectic Au/Al film that melts at 250$^{\circ}C$. After depositing CNT on the electrode made of an Au/Al thin film, we annealed the sample at 250$^{\circ}C$ in air to induce eutectic melting. As a result, Au-Al alloy grains formed, under which the CNT was embedded to produce a rigid and low resistance contact. The embedded CNT contact was as strong as to tolerate the ultrasonic agitation for 90 s and the current-voltage measurement indicated that the contact resistance was lowered by a factor of 4. By performing standard fabrication process on this CNT-deposited substrate to add another pair of electrodes bridged by CNT in perpendicular direction, we could fabricate a CNT cross junction. Finally, we could conclude that the eutectic alloy electrode is valid for CNT sensors by examine the detection of Au ion which is spontaneously reduced to CNT surface. The device sustatined strong washing process and maintained its detection ability.

  • PDF

Vapor Permeability and Moisture Gradient on a Paulownia Wood for Inside Material of Furniture Making

  • Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.447-451
    • /
    • 2008
  • This study was carried out to know the difference of vapor transmission on the thickness of Paulownia wood(Paulownia tomentosa). The behavior of moisture transmission of wood thickness direction is generally estimated by vapor permeability and vapor transmission resistance. In general, Paulownia wood is known to use of inside material for furniture making, because of the excellent ability of vapor adsorption and/or desorption. Quarter sawing Paulownia wood material is prepared and the thickness is 6.0mm, 7.0mm, 8.0mm, 9.0mm, 10.0mm, respectively. The measurement of vapor transmission were conducted by the "cup method" in accordance with JIS(Japanese Industrial Standard) Z-0208. The experiment was made in the condition of 49.8mmHg vapor pressure difference and $40^{circ}C$ at constant temperature. From the experiment results, it was considered that Paulownia wood is very stable on moisture variation and any other material conditions. In this experiment we found that the vapor permeability and vapor permeance was reduced with the increase of wood thickness to vapor direction and vapor transmission resistance and specific vapor transmission resistance was increased with the increase of wood thickness to vapor direction. Besides moisture contents of adsorption and desorption side were about 5 percent and 14 percent, respectively. Mean value was 9.5 percent and about 10 percent in dry oven method. Moisture gradient was reduced with the increase of wood thickness for a small moisture difference of adsorption and desorption side.

  • PDF

The Effect of Work Performance to Smart Phone's Characteristics and Moderated Effects of Innovation Resistance (스마트폰의 특성이 개인의 업무성과에 미치는 영향과 혁신 저항성의 조절효과)

  • Kim, Kyung-Nam;Park, Ji-Hye;Chung, Do-Bum
    • The Journal of Information Systems
    • /
    • v.20 no.2
    • /
    • pp.57-80
    • /
    • 2011
  • This study analyzed the effects of smart phone using for business on work performance in the field. We classified functional and practical aspects of smart phone affecting employee's work performance through former studies. As independent variables, we selected portability of equipment, rapidity of information and ease of use for functional side, and selected fit to work and subjective norms for practical side. And dependent variable was work performance. We also suggested that innovation resistance would be a moderator. The results showed that the effect of work performance was influenced by portability of equipment and fit to work. However, hypotheses on moderating effects of innovation resistance were not supported. This study made a discrimination in terms of an application phase of smart phone as against former studies. The results of this study will provide practical implications for related enterprises in the field to develop ways of using smart phone as an effective strategy.

A Numerical Study on the Performance Characteristics of a Power Plant Air-Cooled Condenser (ACC) Affected by Changes in Operating Conditions (발전소용 공랭식 응축기(ACC)의 작동조건 변화에 따른 성능특성에 대한 수치적 연구)

  • Park, Kyung-Min;Ju, Kihong;Park, Chang Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.243-250
    • /
    • 2017
  • A numerical study was conducted to calculate the cooling capacity variation of a power plant ACC (air-cooled condenser) caused by changes in operating conditions. A numerical model was developed using the ${\varepsilon}-NTU$ and finite volume method, containing 100 elements for a single low fin tube. The model was validated through a comparison of cooling capacity between the simulated values and manufacturer's data. Even though simple assumptions and previously presented heat transfer correlations were applied to the model, the prediction error was 1.9%. The simulated variables of the operating conditions were air velocity, air temperature, and mass flux. The analysis on the variation of thermal resistance along the tube showed that the water side thermal resistance was higher than the air side thermal resistance at the downstream end of the tube, indicating that the ACC capacity could be increased by applying technology to enhance in-tube flow condensation heat transfer.

Analysis of Soil-Lug Interaction Characteristics (토양-러그 상호작용의 특성 해석)

  • ;T. Kishimoto;;大友功一(K. ohotomo)
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-186
    • /
    • 2000
  • Interactions between wheel lug surfaces and soil were analyzed through wheel motion. In this paper, lug surfaces such as trailing and leading lug sides and a lug face were analyzed and reported. The interactions between the surfaces and soil were expressed as the horizontal and vertical directions of resultant forces acting on the surfaces. There analysis indicated qualitatively that (1) the trailing lug side is mainly related to produce motion resistance and reaction to dynamic load, (2) the lug face is related to produce not only the motion resistance, the reaction to the dynamic load but also the traction and (3) the leading lug side is mainly related to produce the traction and the reaction to the dynamic load. Experiments were conducted to prove the results of the motion analysis. Normal and tangential forces acting on the surfaces were measured, and the traction, the motion resistance and the reaction to the dynamic load were calculated with wheel rotational and lug design angles. The experiments proved that the results of wheel motion analyses above mentioned as (1), (2) and obtained from the analysis were correct.

  • PDF

Effects of Resistance Exercise with Pressure Biofeedback Unit on the Gait Ability and Knee Joint Function in Subject with Total Knee Replacement Patients

  • Jin Park
    • The Journal of Korean Physical Therapy
    • /
    • v.36 no.1
    • /
    • pp.27-32
    • /
    • 2024
  • Purpose: This study was conducted to verify the effect of applying a pressure biofeedback unit on walking ability and knee joint function while performing knee joint extensor strengthening exercises using resistance exercise equipment in total knee replacement (TKR) patients. Methods: This study was conducted on twelve patients receiving rehabilitation treatment after being admitted to a rehabilitation hospital post-TKR. Of these, six were allocated to a feedback group with a pressure biofeedback unit, and the other 6 were allocated to a control group without a pressure biofeedback unit. The subjects performed an exercise program for 45 minutes per session, five times a week, for two weeks. Walking ability and knee joint function were evaluated and analyzed before and after exercise. Results: The feedback group showed significantly better improvements in walking speed, gait cycle, step length on the non-operation side, time on the foot on the operation side, K-WOMAC stiffness, and K-WOMAC function than the control group (p<0.05). Conclusion: When strengthening the knee joint extensor muscles using resistance exercise equipment in TKR patients, the provision of a pressure biofeedback unit was found to improve walking ability and knee joint function by inducing concentric-eccentric contraction of the knee joint extensor muscles. Therefore, the study shows that exercise based on the provision of a pressure biofeedback unit should be considered when strengthening knee joint extensor muscles to improve the walking ability and knee joint function of TKR patients in clinical practice.

The Performance of Large-diameter Bored Piles and Large-section Barrettes in Decomposed Geomaterials in Hong Kong

  • Ng Charles W.W.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.334-408
    • /
    • 2006
  • In Hong Kong, large-diameter (${\ge}600mm$) bored piles and large-section excavated rectangular barrettes are commonly used to support tall buildings to resist both vertical and horizontal loads. These piles and barrettes penetrate through and may found in saprolitic soils and decomposed rocks. Generally, the design of these large bored piles and barrettes involves considerable amount of uncertainty and design parameters must usually be verified by field tests. In this paper, over 50 full-scale load tests on large-diameter bored piles and over 15 large-section of rectangular barrettes in Hong Kong are reviewed and interpreted critically, in particular the degree of mobilisation of side shear resistance using a mobilization rating (MR) factor and a displacement index (DI) for floating bored piles and barrettes and rock-socketed piles, respectively. The author was heavily involved with many of these load tests. The diameter of the bored piles tested ranges from 0.6m to 1.8m and the depth varies from 12m to 75m. Sizes of barrettes critically reviewed include $2.2m{\times}0.6m,\;2.2m{\times}0.8m,\;2.8m{\times}0.8m\;and\;2.8m{\times}1.0m$ (on plan) and the depth varies from 36m and 63m. Based on these field tests, a new failure load criterion for large-diameter bored piles and barrettes is developed and proposed. The side shear resistance of the bored piles and barrettes is quantitatively analyzed with respect to local displacements, standard penetration tests, unconfined compressive strength (UCS) for rock sockets and using the effective stress principle. In addition, the effects of construction including post-grouting, construction time, side scraping and excavation tools on side shear resistance are investigated and reported.

  • PDF