• 제목/요약/키워드: SiON

검색결과 19,397건 처리시간 0.052초

Si-Al-SiO2-NH4F(β-Si3N4)계에서 연소반응에 의한 β-SiAlON분말의 제조 (Preparation of β-SiAlON Powder by Combustion Reaction in the System of Si-Al-SiO2-NH4F(β-Si3N4))

  • 민현홍;신창윤;원창환
    • 한국세라믹학회지
    • /
    • 제43권10호
    • /
    • pp.595-600
    • /
    • 2006
  • The preparation of $\beta$-SiAlON powder by SHS in the system of $Si-Al-SiO_2-NH_4F(\beta-Si_3N_4)$ was investigated in this study. In the preparation of SiAlON powder, the effect of gas pressure, compositions such as Si, $NH_4F$, \beta-Si_3N_4$ and additive in mixture on the reactivity were investigated. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure $\beta$-SiAlON was $3Si+Al+2SiO_2+NH_4F$. The $\beta$-SiAlON powder synthesized in this condition was a single phase $\beta$-SiAlON with a rod like morphology.

다결정 Si기판 위에서의 Co/Ti 이중층의 실리사이드화 (Silicidation of the Co/Ti Bilayer on the Doped Polycrystalline Si Substrate)

  • 권영재;이종무;배대록;강호규
    • 한국재료학회지
    • /
    • 제8권7호
    • /
    • pp.579-583
    • /
    • 1998
  • P가 고농도로 도핑된 다결정 Si 기판 위에 Co/Ti 이중층막을 스퍼터 증착하고 급속열처리함으로써 얻어지는 실리사이드 층구조, 실리사이드막의 응집, 그리고 도펀트의 재분포 등을 단결정 Si 기판 위에서의 그것들과 비교하여 조사하였다. 다결정 Si 기판위에 형성한 Co/Si 이중층을 열처리할 때 단결정 기판에서의 경우보다 $CoSi_2$로의 상천이는 약간 더 낮은 온도에서 시작되며, 막의 응집은 더 심하게 일어난다. 또한, 다결정 Si 기판내의 도펀트보다 웨이퍼 표면을 통하여 바깥으로 outdiffusion 함으로써 소실되는 양이 훨씬 더 많다. 이러한 차이는 다결정 Si 내에서의 결정립계 확산과 고농도의 도펀트에 기인한다. Co/Ti/doped-polycrystalline si의 실리사이드화 열처리후의 층구조는 polycrystalline CoSi2/polycrystalline Si 으로서 Co/Ti(100)Si을 열처리한 경우의 층구조인 Co-Ti-Si/epi-CoSi2/(100)Si 과는 달리 Co-Ti-Si층이 사라진다.

  • PDF

MTS를 사용한 LPCVD 법에 의한 (100)Si 위의 $\beta$-SiC 증착 및 계면특성 (Interfacial Characteristics of $\beta$-SiC Film Growth on (100) Si by LPCVD Using MTS)

  • 최두진;김준우
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.825-833
    • /
    • 1997
  • Silicon carbide films were deposited by low pressure chemical vapor deposition(LPCVD) using MTS(CH3SICl3) in hydrogen atmosphere on (100) Si substrate. To prevent the unstable interface from being formed on the substrate, the experiments were performed through three deposition processes which were the deposition on 1) as received Si, 2) low temperature grown SiC, and 3) carbonized Si by C2H2. The microstructure of the interface between Si substrates and SiC films was observed by SEM and the adhesion between Si substrates and SiC films was measured through scratch test. The SiC films deposited on the low temperature grown SiC thin films, showed the stable interfacial structures. The interface of the SiC films deposited on carbonized Si, however, was more stable and showed better adhesion than the others. In the case of the low temperature growth process, the optimum condition was 120$0^{\circ}C$ on carbonized Si by 3% C2H2, at 105$0^{\circ}C$, 5 torr, 10 min, showed the most stable interface. As a result of XRD analysis, it was observed that the preferred orientation of (200) plane was increased with Si carbonization. On the basis of the experimental results, the models of defect formation in the process of each deposition were compared.

  • PDF

$Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향 (Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites)

  • 이창주;김득중
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에서 브레이징 조건이 접합강도에 미치는 영향의 연구 (The effects of brazing conditions on the bond strength of the SiC/SiC and SiC/mild steel joints brazed by Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.104-114
    • /
    • 1997
  • The microstructure and bond strength were investigated on the SiC/SiC and SiC/mild steel joints brazed by Ag-5at%Ti alloy. Ag-5at%Ti-2at%Fe and -5at%Fe brazing alloys were also used to see the effects of Fe addition on the bond strength of SiC/SiC brazed joints. Brazing temperature and brazing gap were selected and examined as brazing variables. The microstructure of SiC/SiC brazed joints was affected by Fe addition to the Ag-5at%Ti alloy, but the bond strength was not. Increasing brazing temperature also changed the microstructure of $Ti_5Si_3$ reaction layer and brazing alloy matrix of the SiC/SiC and SiC/mild steel joints, but not the bond strength. Brazing gap had a great effects on the bond strength. Decreasing brazing gap from 0.2 mm to 0.1 mm in SiC/SiC brazing increased the bond strength from 187 MPa to 263 MPa and, in SiC/mild steel brazing, from 189 MPa to 212 MPa. It was concluded that the most important parameter on the bond strength in SiC/SiC and SiC/mild steel brazing was the relative ratio between brazing gap and specimen size.

  • PDF

SiNx/Si 구조를 이용한 SiC 박막성장 (Growth of SiC film on SiNx/Si Structure)

  • 김광철;박찬일;남기석;임기영
    • 한국재료학회지
    • /
    • 제10권4호
    • /
    • pp.276-281
    • /
    • 2000
  • Si(111) 표면을 NH$_3$분위기에서 실리콘질화물(SiNx)로 변형시킨 후 탄화규소(silicon carbide, SiC) 박막을 성장하였다. 질화시간이 증가함에 따라 SiC 박막 두께가 감소함을 관찰하였다. 또한 성장변수에 따라 SiC/Si 계면에서 결정결함인 틈새를 없앨 수 있었다. 100nm, 300nm, 500nm의 SiNx/Si 기판 위에 SiC 박막을 성장시켰다. 성장된 SiC 박막들은 모두 [111]면을 따라 성장되었고, SiC 결정들이 원주형 낟알로 성장되었다. SiC/SiNx 계면에서 void를 관찰할 수 없었다. 이러한 실험 결과는 SOI 구조의 산화규소를 SiNx로 대체함으로써 SiC 소자 제작에 응용될 수 있는 방향을 제시하고 있다.

  • PDF

Strained Si/Relaxed SiGe/SiO2/Si 구조 FD n-MOSFET의 전자이동에 Ge mole fraction과 strained Si 층 두께가 미치는 영향 (Effect of Ge mole fraction and Strained Si Thickness on Electron Mobility of FD n-MOSFET Fabricated on Strained Si/Relaxed SiGe/SiO2/Si)

  • 백승혁;심태헌;문준석;차원준;박재근
    • 대한전자공학회논문지SD
    • /
    • 제41권10호
    • /
    • pp.1-7
    • /
    • 2004
  • SOI 구조에서 형성된 MOS 트랜지스터의 장점과 strained Si에서 전자의 이동도가 향상되는 효과를 동시에 고려하기 위해 buried oxide(BOX)층과 Top Si층 사이에 Ge을 삽입하여 strained Si/relaxed SiGe/SiO₂Si 구조를 형성하고 strained Si fully depletion(FD) n-MOSFET를 제작하였다. 상부 strained Si층과 하부 SiGe층의 두께의 합을 12.8nm로 고정하고 상부 strained Si 층의 두께에 변화를 주어 두께의 변화가 electron mobility에 미치는 영향을 분석하였다. Strained Si/relaxed SiGe/SiO2/Si (strained Si/SGOI) 구조위의 FD n-MOSFET의 전자 이동도는 Si/SiO₂/Si (SOI) 구조위의 FD n-MOSFET 에 비해 30-80% 항상되었다. 상부 strained Si 층과 하부 SiGe 층의 두께의 합을 12.8nm 로 고정한 shrined Si/SGOI 구조 FD n-MOSFET에서 상부층 strained Si층의 두께가 감소하면 하부층 SiGe 층 두께 증가로 인한 Ge mole fraction이 증가함에 의해 inter-valley scattering 이 감소함에도 불구하고 n-channel 층의 전자이동도가 감소하였다. 이는 strained Si층의 두께가 감소할수록 2-fold valley에 있는 전자가 n-channel 층에 더욱더 confinement 되어 intra-valley phonon scattering 이 증가하여 전자 이동도가 감소함이 이론적으로 확인되었다.

Theoretical Study of Electron Mobility in Double-Gate Field Effect Transistors with Multilayer (strained-)Si/SiGe Channel

  • Walczak, Jakub;Majkusiak, Bogdan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권3호
    • /
    • pp.264-275
    • /
    • 2008
  • Electron mobility has been investigated theoretically in undoped double-gate (DG) MOSFETs of different channel architectures: a relaxed-Si DG SOI, a strained-Si (sSi) DG SSOI (strained-Si-on-insulator, containing no SiGe layer), and a strained-Si DG SGOI (strained-Si-on-SiGe-on-insulator, containing a SiGe layer) at 300K. Electron mobility in the DG SSOI device exhibits high enhancement relative to the DG SOI. In the DG SGOI devices the mobility is strongly suppressed by the confinement of electrons in much narrower strained-Si layers, as well as by the alloy scattering within the SiGe layer. As a consequence, in the DG SGOI devices with thinnest strained-Si layers the electron mobility may drop below the level of the relaxed DG SOI and the mobility enhancement expected from the strained-Si devices may be lost.

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구 (A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

Co/내열금속/다결정 Si 구조의 실리사이드화와 열적안정성 (Silicidation and Thermal Stability of the So/refreactory Metal Bilayer on the Doped Polycrystalline Si Substrate)

  • 권영재;이종무
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.604-610
    • /
    • 1999
  • Silicide layer structures and morphology degradation of the surface and interface of the silicide layers for he Co/refractory metal bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The CoSi-CoSi2 phase transition temperature is lower an morphology degradation of the silcide layer occurs more severely for the Co/refractorymetal bilayer on the P-doped polycrystalline Si substrate than on the single Si substrate. Also the final layer structure and the morphology of the films after silicidation annealing was found to depend strongly upon the interlayer metal. The layer structure after silicidation annealing of Co/Hf/doped-poly Si is Co-Hf alloy/polycrystalline CoSi2/poly Si substrate while that of Co/Nb is polycrystalline CoSi2/NbSi2/polycrystalline CoSi2/poly Si.

  • PDF