DOI QR코드

DOI QR Code

Theoretical Study of Electron Mobility in Double-Gate Field Effect Transistors with Multilayer (strained-)Si/SiGe Channel

  • Walczak, Jakub (Institute of Microelectronics and Optoelectronics, Warsaw University of Technology) ;
  • Majkusiak, Bogdan (Institute of Microelectronics and Optoelectronics, Warsaw University of Technology)
  • Published : 2008.09.30

Abstract

Electron mobility has been investigated theoretically in undoped double-gate (DG) MOSFETs of different channel architectures: a relaxed-Si DG SOI, a strained-Si (sSi) DG SSOI (strained-Si-on-insulator, containing no SiGe layer), and a strained-Si DG SGOI (strained-Si-on-SiGe-on-insulator, containing a SiGe layer) at 300K. Electron mobility in the DG SSOI device exhibits high enhancement relative to the DG SOI. In the DG SGOI devices the mobility is strongly suppressed by the confinement of electrons in much narrower strained-Si layers, as well as by the alloy scattering within the SiGe layer. As a consequence, in the DG SGOI devices with thinnest strained-Si layers the electron mobility may drop below the level of the relaxed DG SOI and the mobility enhancement expected from the strained-Si devices may be lost.

Keywords

References

  1. H.-S. P. Wong, "Beyond the conventional transistor," IBM J. Res. & Dev., Vol.46, No.2/3, pp.133-167, May 2002 https://doi.org/10.1147/rd.462.0133
  2. D. A. Buchanan, "Beyond microelectronics: materials and technology for nano-scale CMOS devices," phys. stat. sol. (c) 1, No. S2, pp.S155-S162, 2004 https://doi.org/10.1002/pssc.200405135
  3. International Technology Roadmap in Semiconductors (ITRS)
  4. F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Elewa, "Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance," IEEE Electron Device Lett., Vol.ED-8, pp.410-412, Sept. 1987
  5. J. P. Colinge, M. H. Gao, A. Romano-Rodriguez, H. Maes, and C. Claeys, "Silicon-on-insulator gateall- around device," in IEDM Tech. Dig., pp.595- 598, 1990
  6. D. Hisamoto, T. Kaga, and E. Takeda, "Impact of the vertical SOI 'Delta' structure on planar device technology," IEEE Trans. Electron Devices, Vol.38, pp.1419-1424, June 1991 https://doi.org/10.1109/16.81634
  7. B. Majkusiak, T. Janik, and J. Walczak, "Semiconductor thickness effects in the double-gate SOI MOSFET," IEEE Trans. Electron Devices, Vol.45, No.5, pp.1127-1134, May 1998 https://doi.org/10.1109/16.669563
  8. H.-S. Wong, D. Frank, and P. Solomon, "Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation," in IEDM Tech. Dig., pp.407-410, 1998
  9. F. Gamiz and M. V. Fischetti, "Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion," J. Appl. Phys., Vol.89, pp.5478-5487, 2001 https://doi.org/10.1063/1.1358321
  10. F. Gamiz, J. B. Roldan, A. Godoy, and F. Jimenez- Molinos, "Double gate silicon-on-insulator transistors: $n^+-n^+$ gate versus n+-p+ gate configuration," in Proc. IEEE ESSDERC, pp.173-176, 2004
  11. K. Uchida , J. Koga, and S. Takagi, "Experimental study on carrier transport mechanisms in doubleand single-gate ultrathin-body MOSFETs - Coulomb scattering, volume inversion, and $\delta$TSOI-induced scattering," in IEDM Tech. Dig., pp.805-808, 2003
  12. D. Esseni, M. Mastrapasqua, G. K. Celler, C. Fiegna, L. Selmi, and E. Sangiorgi, "An Experimental Study of Mobility Enhancement in Ultrathin SOI Transistors Operated in Double-Gate Mode," IEEE Trans. Electron. Devices, Vol.50, No.3, pp.802-808, Mar. 2003 https://doi.org/10.1109/TED.2002.807444
  13. G. Tsutsui , M. Saitoh, T. Saraya, T. Nagumo, and T. Hiramoto, "Mobility enhancement due to volume inversion in (110)-oriented ultra-thin body doublegate nMOSFETs with body thickness less than 5 nm," in IEDM Tech. Dig., pp.747-750, 2005
  14. V. Sverdlov, E. Ungersboeck, H. Kosina, and S. Selberherr, "Volume inversion mobility in SOI MOSFETs for different thin body orientations," Solid-State Electron., Vol.51, pp.299-305, 2007 https://doi.org/10.1016/j.sse.2007.01.022
  15. S. Takagi, J. Koga, and A. Toriumi, "Subband structure engineering for performance enhancement of Si MOSFETs," in IEDM Tech. Dig., pp.219-222, 1997
  16. F. Gamiz, J. A. Lopez-Villanueva, J. B. Roldan, J. E. Carceller, and P. Cartujo, "Monte Carlo Simulation of Electron Transport Properties in Extremely Thin SOI MOSFET's," IEEE Trans. Electron. Devices, Vol.45, pp.1122-1126, May 1998 https://doi.org/10.1109/16.669557
  17. M. Shoji and S. Horiguchi, "Electronic structures and phonon-limited electron mobility of doublegate silicon-on-insulator Si inversion layers," J. Appl. Phys., Vol.85, No.5, pp.2722-2731, 1999 https://doi.org/10.1063/1.369589
  18. D. Esseni, M. Mastrapasqua, G. K. Celler, C. Fiegna, L. Selmi, and E. Sangiorgi, "Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicrometer technology application," IEEE Trans. Electron. Devices, Vol.48, No.12, pp.2842-2850, Dec. 2001 https://doi.org/10.1109/16.974714
  19. K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata, and S. Takagi, "Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm," in IEDM Tech. Dig., pp.47-50, 2002
  20. R. People, "Physics and applications of $Ge_xSi_{1-x}/Si $ strained-layer heterostructures," J. Quant. Elec., Vol.QE-22, pp.1696-1710, 1986
  21. M. V. Fischetti and S. E. Laux, "Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys," J. Appl. Phys., Vol.80, No.4, pp.2234-2252, 1996 https://doi.org/10.1063/1.363052
  22. P. R. Chidambaram, C. Bowen, S. Chakravarthi, C. Machala, and R. Wise, "Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing," IEEE Trans. Electron Devices, Vol.53, No.5, pp.944-964, May 2006 https://doi.org/10.1109/TED.2006.872912
  23. D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier, H. Jaouen, and A. Ghetti, "Strained Si, Ge, and Si1-xGex alloys modeled with a firstprinciples- optimized full-zone k.p method," Phys. Rev. B, Vol.74, No.19, pp.195208-1-195208-20, 2006 https://doi.org/10.1103/PhysRevB.74.195208
  24. M. V. Fischetti, F. Gamiz, and W. Hänsch, "On the enhanced electron mobility in strained-silicon inversion layers," J. Appl. Phys., Vol.92, No.12, pp.7320-7324, 2002 https://doi.org/10.1063/1.1521796
  25. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, "Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors," J. Appl. Phys., Vol.97, No.011101, pp.1-27, 2005 https://doi.org/10.1007/10828028_1
  26. T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, et al., "A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors," in IEDM Tech. Dig., pp.978-980, 2003
  27. K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Coan, T. Ghani, et al., "Delaying forever: Uniaxial strained silicon transistors in a 90 nm CMOS technology," in VLSI Symp. Tech. Dig., pp. 50-51, 2004
  28. S. E. Thompson, G. Sun, Y. S. Choi, and T. Nishida, "Uniaxial-Process-Induced Strained-Si: Extending the CMOS Roadmap," IEEE Trans. Electron Devices, Vol.53, No.5, pp.1010-1020, May 2006 https://doi.org/10.1109/TED.2006.872088
  29. S. Takagi, T. Mizuno, T. Tezuka, N. Sugiyama, T. Numata, K. Usuda, et al., "Channel structure design, fabrication and carrier transport properties of strained-Si/SiGe-on-insulator (strained-SOI) MOSFETs," in IEDM Tech. Dig., pp.57-60, 2003
  30. T. Mizuno, N. Sugiyama, T. Tezuka, T. Numata, S. Takagi, "High performance strained-SOI CMOS devices using thin film SiGe-on-insulator technology," IEEE Trans Electron Devices, Vol.50, No.4, pp. 988-994, 2003 https://doi.org/10.1109/TED.2003.812149
  31. T. A. Langdo, M. T. Currie, A. Lochtefeld, R. Hammond, J. A. Carlin, M. Erdtmann, et al., "SiGefree strained Si on insulator by wafer bonding and layer transfer," Appl. Phys. Lett., Vol.82, No.24, pp.4256-4258, June 2003 https://doi.org/10.1063/1.1581371
  32. K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, et al., "Fabrication and mobility charac teristics of ultra-thin strained-Si directly on insulator (SSDOI) MOSFETs," in IEDM Tech. Dig., pp.49- 52, 2003
  33. I. Aberg, O.O. Olubuyide, C.N. Chleirigh, I. Lauer, D.A. Antoniadis, J. Li, R. Hull, and J.L. Hoyt, "Electron and hole mobility enhancements in sub- 10 nm-thick strained silicon directly on insulator fabricated by a bond and etch-back technique," in VLSI Symp. Tech. Dig., pp.52-53, 2004
  34. W. F. Clark, D. M. Fried, L. D. Lanzerotti, and E. J. Nowak, "Strained FIN FETS structure and method," U.S. Patent 6 635 909 B2, October 21, 2003
  35. N. Barin, C. Fiegna, E. Sangiorgi, "Analysis of strainedsilicon- on-insulator double-gate MOS structures," in Proc. IEEE ESSDERC, pp.169-172, 2004
  36. T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, and S. Takagi., "(110)-Surface strained- SOI CMOS devices," IEEE Trans. Electron Devices, Vol.52, No.3, pp.367-374, Mar. 2005 https://doi.org/10.1109/TED.2005.843894
  37. T. Krishnamohan, D. Kim, C. D. Nguyen, C. Jungemann, Y. Nishi, and K. C. Saraswat, "Highmobility low band-to-band-tunneling strained-germanium double-gate heterostructure FETs: simulations," IEEE Trans. Electron Devices, Vol.53, No.5, pp. 1000-1009, May 2006
  38. P. Palestri, N. Barin, D. Brunel, C. Busseret, A. Campera, P. A. Childs, et al., "Comparison of Modeling Approaches for the Capacitance-Voltage and Current-Voltage Characteristics of Advanced Gate Stacks," IEEE Trans. Electron Devices, Vol.54, No.1, pp.106-114, Jan. 2007 https://doi.org/10.1109/TED.2006.887226
  39. L. Yang, J. R. Watling, R. C. W Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, "Si/SiGe heterostructure parameters for device simulations," Semicond. Sci. Technol., Vol.19, pp.1174-1182, 2004 https://doi.org/10.1088/0268-1242/19/10/002
  40. V. Venkataraman, C. W. Liu, and J. C. Sturm, "Alloy scattering limited transport of two-dimensional carriers in strained $Si_{1-x}Ge_x$ quantum wells," Appl. Phys. Lett., Vol.63, No.20, pp.2795-2797, 1993 https://doi.org/10.1063/1.110337
  41. D. Vasileska and S. S. Ahmed, "Narrow-width SOI devices: the role of quantum-mechanical size quantization effect and unintentional doping on the device operation," IEEE Trans. Electron Devices, Vol.52, pp.227-236, February 2005 https://doi.org/10.1109/TED.2004.842715
  42. M. V. Fischetti, "Long-range Coulomb interactions in small Si devices. Part II. Effective electron mobility in thin-oxide structures," J. Appl. Phys., Vol.89, No.2, pp.1232-1250, 2001 https://doi.org/10.1063/1.1332424
  43. W.J. Gross, D. Vasileska, and D.K. Ferry, "Ultrasmall MOSFETs: the importance of the full Coulomb interaction on device characteristics," IEEE Trans. Electron. Devices, Vol.47, No.10, pp.1831-1837, Oct. 2000 https://doi.org/10.1109/16.870556
  44. S-I. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, "Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor fieldeffect transistors," J. Appl. Phys., Vol.80, No.3, pp.1567-1577, 1996. https://doi.org/10.1063/1.362953
  45. C. Jacoboni and L. Reggiani, "The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials," Rev. Mod. Phys., Vol.55, No.3, pp.645-705, 1983 https://doi.org/10.1103/RevModPhys.55.645
  46. T. Ando, A. B. Fowler, and F. Stern., "Electronic properties of two-dimensional systems," Rev, Mod. Phys., Vol.54, pp.437-672, 1982 https://doi.org/10.1103/RevModPhys.54.437
  47. F. Gamiz, J. B. Roldan, J. A. Lopez-Villanueva, P. Cartujo-Cassinello, and J. E. Carceller, "Surface roughness at the $Si-SiO_2$ interfaces in fully depleted silicon-on-insulator inversion layers," J. Appl. Phys., Vol.86, No.12, pp.6854-6863, 1999 https://doi.org/10.1063/1.371763
  48. M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, "Six-band k.p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness," J. Appl. Phys., Vol.94, No.2, pp.1079-1095, 2003 https://doi.org/10.1063/1.1585120
  49. S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, "Surface roughness at the Si(100)-$SiO_2$interface," Phys. Rev. B, Vol.32, No.12, pp.8171-8186, 1985 https://doi.org/10.1103/PhysRevB.32.8171
  50. J. Li and T.-P. Ma, "Scattering of silicon inversion layer electrons by metal/oxide interface roughness," J. Appl. Phys., Vol.62, No.10, pp.4212-4215, 1987 https://doi.org/10.1063/1.339092
  51. J. Walczak and B. Majkusiak, "The remote roughness mobility resulting from the ultrathin $SiO_2$ thickness nonuniformity in the DG SOI and bulk MOS transistors," Microelectronic Engineering, Vol.59, No.1-4, pp.417-421, 2001 https://doi.org/10.1016/S0167-9317(01)00633-5
  52. F. Gamiz, A. Godoy, F. Jimenez-Molinos, P. Cartujo-Cassinello, and J. B Roldan, "Remote sur face roughness scattering in ultrathin-oxide MOSFETs," in Proc. IEEE ESSDERC, pp.403-406, 2003
  53. A. Gold, "Electronic transport properties of a twodimensional electron gas in a silicon quantum-well structure at low temperature," Phys. Rev. B, Vol.35, No.2, pp.723-733, 1987 https://doi.org/10.1103/PhysRevB.35.723
  54. H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, "Interface roughness scattering in GaAs/ AlAs quantum wells," Appl. Phys. Lett., Vol. 51, No.23, pp.1934-1936, 1987 https://doi.org/10.1063/1.98305
  55. C-Y. Mou and T-m. Hong, "Transport in quantum wells in the presence of interface roughness," Phys. Rev. B, Vol.61, No.19, pp.12612-12615, 2000 https://doi.org/10.1103/PhysRevB.61.12612
  56. K. Uchida and S. Takagi, "Carrier scattering induced by thickness fluctuation of silicon-oninsulator film in ultrathin-body metal-oxide-semiconductor field-effect transistors," Appl Phys Let., Vol.82, No.17, pp.2916-2918, 2003 https://doi.org/10.1063/1.1571227
  57. D. Esseni, A. Abramo, L. Selmi, and E. Sangiorgi, "Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n- MOSFETs," IEEE Trans. Electron. Devices, Vol. 50, No.12, pp.2445-2455, Dec. 2003 https://doi.org/10.1109/TED.2003.819256
  58. T. Low, Li Ming-Fu, G. Samudra, Yeo Yee-Chia, Zhu Chunxiang, A. Chin, and Kwong Dim-Lee, "Modeling study of the impact of surface roughness on silicon and germanium UTB MOSFETs," IEEE Trans. Electron. Devices, Vol.52, No.11, pp.2430-2439, Nov. 2005 https://doi.org/10.1109/TED.2005.857188
  59. F. Monsef, P. Dollfus, S. Galdin-Retailleau, H.-J. Herzog, and T. Hackbarth, "Electron transport in Si'SiGe modulation-doped heterostructures using Monte Carlo simulation," J. Appl. Phys., Vol.95, No.7, pp.3587-3593, 2004 https://doi.org/10.1063/1.1650885
  60. L. Donetti, F. Gamiz, N. Rodriguez, F. Jimenez, and C. Sampedro, "Influence of acoustic phonon confinement on electron mobility in ultrathin silicon on insulator layers," Appl. Phys. Lett., Vol.88, No.12, pp.122108(1-3), 2006 https://doi.org/10.1063/1.2187952

Cited by

  1. Extraction of Average Interface Trap Density using Capacitance-Voltage Characteristic at SiGe p-FinFET and Verification using Terman's Method vol.52, pp.4, 2015, https://doi.org/10.5573/ieie.2015.52.4.056