• Title/Summary/Keyword: SiC-C films

Search Result 2,100, Processing Time 0.028 seconds

Stduy on formation of W-silicide in the diped-phosphorus poly-Si/SiO$_{2}$/Si-substrate (인이 주입된 poly-Si/SiO$_{2}$/Si 기판에서 텅스텐 실리사이드의 형성에 관한연구)

  • 정회환;주병권;오명환;정관수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.126-134
    • /
    • 1996
  • Tungsten silicide films were deposited on the phosphorus-doped poly-Si/SiO$_{2}$/Si-substrates by LPCVD (low pressue chemical vapor deposition). The formation and various properties of tungsten silicide processed by furnace annealing in N$_{2}$ ambient were evaluated by using XRD. AFM, 4-point probe and SEM. And the redistribution of phosphorus atoms has been observed by SIMS. The crystal structure of the as-deposited tungsten silicide films were transformed from the hexagonal to the tetragonal structure upon annealing at 550.deg. C. The surface roughness of tungsten polycide films were found to very smoothly upon annelaing at 850.deg. C and low phosphorus concentration in polysilicon layer. The sheet resistance of tungsten polycide low phosphorus concentration in polysilicon layer. The sheet resistance of tungsten polycide films are measured to be 2.4 .ohm./ㅁafter furnace annealing at 1100.deg. C, 30min. It was found that the sheet resistance of tungsten polycide films upon annealing above 1050.deg. C were independant on the phosphorus concentration of polysilicon layer and furnace annealing times. An out-diffusion of phosphorus impurity through tungsten silicide film after annealing in $O_{2}$ ambient revealed a remarkably low content of dopant by oxide capping.

  • PDF

A Characteristic study of SiC Nanowires by RF-Sputtering (RF-Sputtering 법에 의한 SiC 나노와이어의 특성연구)

  • Jeong, Chang-Gu;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.344-349
    • /
    • 2010
  • Silicon carbide nanowires were grown by heat treatment of the films at $1200^{\circ}C$ after amorphous SiC thin films were deposited on graphite substrate by radio frequency magnetron sputtering at $600^{\circ}C$. It was confirmed that SiC nanowires with the diameter of 20-60 nm and length of about 50nm were grown from Field Emission Scanning Election Microscope (FE-SEM) and Transmission Election Microscope (TEM) observation. The diameter of nanowires was increased as heat treatment time is increased. The nanowires were identified to ${\beta}$-SiC single crystalline from X-Ray Diffraction(XRD) analysis. It was observed from this study that deposition temperature of samples was critical to the crystallization of nanowires. On the other hand, the effect of deposition time was insignificant.

The Hydrogenated Micro-crystalline Silicon(${\mu} c-Si:H$) Films Deposited by Hot Wire CVD Method (Hot Wire CVD법에 의한 수소화된 미세결정 실리콘(${\mu} c-Si:H$) 박막 증착)

  • Lee, Jeong-Cheol;Song, Jin-Su;Park, Lee-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.17-27
    • /
    • 2000
  • This paper presents deposition and characterization of hydrogenated microcrystalline silicon (${\mu}c$ -Si:H) films on low cost glass substrate by Hot Wire CVD(HWCVD). The HWCVD ${\mu}c$ -Si:H films had deposition rates ranging from 2${\AA}$/sec to 35${\AA}$/sec with the variations of preparation conditions, which was 10 times higher than that of the films obtained from the conventional PECVD method. From the Raman spectroscopy, the prepared silicon films were found to be composed of the mixture of crystalline and amorphous phases. The crystalline volume fraction and average crystallite size, obtained from the Raman To mode peak near 520cm$^{-1}$, were 37-63% and 6-10 nm, respectively. The conductivity activation energy($E_a$) of the ${\mu}c$ -Si:H films, representing the difference of conduction band and Fermi level in an intrinsic semiconductors, increased from 0.22eV to 0.68eV with increasing pressure from 30mTorr to 300mTorr. The increase of $E_a$ with pressure indicates that the deposited films have properties close to intrinsic semiconductors, which is also proved with low dark conductivity of the ${\mu}c$ -Si:H deposited at 300mTorr. The tungsten concentration incorporated into films was about $6{\times}10^{16}atoms/cm^3$ in the samples prepared at wire temperature of 1800$^{\circ}C$.

  • PDF

Charicteristics of PAN-PZT Thick Films on Si-Substrate by Screen Printing (스크린 프린팅법으로 제조된 PAN-PZT 후막의 특성)

  • 김상종;최지원;김현재;성만영;윤석진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.139-142
    • /
    • 2002
  • Characteristics of piezoelectric thick films prepared by screen printing were investigated. The piezoelectric thick films were fabricated using Pb(Al,Nb)O$_3$-Pb(Zr,Ti)O$_3$ system on Si-substrate. The fabricated thick films were burned out at 400$^{\circ}C$ and sintered at 850∼1000$^{\circ}C$ using rapid thermal annealing(RTA) precess. The thickness of piezoelectric thick films were 10$\mu\textrm{m}$. PAN-PZT thick film on Ag-Pd/SiO$_2$/Si prepared at 900$^{\circ}C$/1300sec had remanent polarization of 19.70 ${\mu}$C/$\textrm{cm}^2$.

  • PDF

A study on thermal behavior of Diamond-like carbon film (Diamond-like carbon film의 열적거동에 관한 연구)

  • Cho, kwang-Rae;Noh, Jeong-Yeon;So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.119-123
    • /
    • 2012
  • Diamond-like carbon(DLC) thin films with interlayer were deposited on silicon substrate using a reactive sputtering method. The thermal stability of the films was investigated by annealing the films for 1hr in air in the range of 100 to $500^{\circ}C$. The $I_D/I_G$ ratio increased with increasing temperature as related to the $sp^3-to-sp^2$transition. Accordingly, G-position shifting started from $150^{\circ}C$ in the DLC films and from $270^{\circ}C$ in the a-Si/DLC films. Moreover, in the case of the a-Si/DLC films the film still observed even after annealing at $500^{\circ}C$. The thermal stability of the reactive sputtered DLC films appeared to be improved by the a-Si interlayer.

  • PDF

Effect of Deposition Temperature on Structural Properties of ZnO Thin Films on 4H-SiC Substrate (4H-SiC 기판 위에 성장된 ZnO 박막의 온도에 따른 구조적 특성 분석)

  • Kim, Ji-Hong;Cho, Dae-Hyung;Moon, Byung-Moo;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.120-120
    • /
    • 2008
  • We demonstrate epitaxial growth of ZnO thin films on 4H-SiC(0001) substrates using pulsed laser deposition (PLD). ZnO and SiC have attracted attention for their special material properties as wide band gap semiconductors. Especially, ZnO could be applied to optoelectronic applications such as light emitting devices and photo detectors due to its direct wide bandgap (Eg) of ~3.37eV and large exciton binding energy of ~60meV. SiC shows a good lattice matching to ZnO compared with other commonly used substrates and in this regard SiC is a good candidate as a substrate for ZnO. In this work, ZnO thin films were grown on 4H-SiC(0001) substrates by PLD using an Nd:YAG laser with a 355nm wavelength. The crystalline properties of the films were evaluated by x-ray diffraction (XRD) $\theta-2\theta$, rocking curve and pole figure measurements using a high-resolution diffractometer. The surface morphology of the films was studied by atomic force microscopy (AFM).

  • PDF

Fabrications of Pd/poly 3C-SiC schottky diodes for hydrogen gas sensor at high temperatures (고온 가스센서용 Pd-다결정 3C-SiC 쇼트키 다이오드 제작)

  • Ahn, Jeong-Hak;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.78-79
    • /
    • 2008
  • In this paper, poly 3C-SiC thin films were grown on $SiO_2$/Si by atmospheric pressure chemical vapor deposition (APCVD) using HMDS, $H_2$, and Ar gas at $1100^{\circ}C$ for 30 min, respectively. And then, palladium films were deposited on poly 3C-SiC by RF magnetron sputter. Thickness, uniformity, and quality of these samples were performed by SEM. Crystallinity and preferred orientationsof palladium were analyzed by XRD. And Pd/poly 3C-SiC schottky diodes were fabricated and characterized by current-voltage measurements. Its electric current density Js and barrier height voltage were measured as $2\times10^{-3}$ A/$cm^2$, 0.58 eV, respectively. And these devices operated about $350^{\circ}C$. From results, Pd/poly 3C-SiC devices are promising for high temperature hydrogen sensor and applications.

  • PDF

Effect of Si on the Microstructure and Mechanical Properties of Ti-Al-Si-C-N Coatings (Si 함량에 따른 Ti-Al-Si-C-N 코팅막의 미세구조와 기계적 특성의 변화에 관한 연구)

  • Hong, Young-Su;Kwon, Se-Hun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Quinary Ti-Al-Si-C-N films were successfully synthesized on SUS 304 substrates and Si wafers by a hybrid coating system combining an arc ion plating technique and a DC reactive magnetron sputtering technique. In this work, the effect of Si content on the microstructure and mechanical properties of Ti-Al-C-N films were systematically investigated. It was revealed that the microstructure of Ti-Al-Si-C-N coatings changed from a columnar to a nano-composite by the Si addition. Due to the nanocomposite microstructure of Ti-Al-Si-C-N coatings, the microhardness of The Ti-Al-Si-C-N coatings significantly increased up to 56 GPa. In addition the average friction coefficients of Ti-Al-Si-C-N coatings were remarkably decreased with Si addition. Therefore, Ti-Al-Si-C-N coatings can be applicable as next-generation hard-coating materials due to their improved hybrid mechanical properties.

Reactive ion Etching Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100) 기판위에 성장된 3C-SiC의 RIE 특성)

  • Jung, Soo-Yong;Woo, Hyung-Soon;Jin, Dong-Woo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.892-895
    • /
    • 2003
  • This paper describes on RIE(Reactive Ion Etching) characteristics of 3C-SiC(Silicon Carbide) grown on Si(100) wafers. During RIE of 3C-SiC films in this work, $CHF_3$ gas is used to form of polymer as a side wall for excellent anisotropy etching. From this process, etch rates are obtained a $60{\sim}980{\AA}/min$ by various conditions such as $CHF_3$ gas flux, $O_2$ addition ratio, RF power and electrode distance. Also, approximately $40^{\circ}$ mesa structures are successfully formed at 100 mTorr $CHF_3$ gas flow ratio, 200 W RF power and 30 mm electrode distance. Moreover, vertical side wall is fabricated by anisotropy etching with 50% $O_2$ addition ratio and 25 mm electrode distance. Therefore, RIE of 3C-SiC films using $CHF_3$ could be applicable as fabrication process technology for high-temperature 3C-SiC MEMS applications.

  • PDF

Growth of Single Crystalline 3C-SiC Thin Films for High Power Devices by CVD (CVD에 의한 고전력 디바이스용 단결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Shim, Jae-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.98-102
    • /
    • 2010
  • This paper describes that single crystalline 3C-SiC (cubic silicon carbide) thin films have been deposited on carbonized Si(100) substrates using hexamethyldisilane (HMDS, $Si_2(CH_3){_6}$) as a safe organosilane single precursor and a nonflammable mixture of Ar and $H_2$ gas as the carrier gas by APCVD at $1280^{\circ}C$. The deposition was performed under various conditions to determine the optimized growth condition. The crystallinity of the 3C-SiC thin film was analyzed by XRD (X-ray diffraction). The surface morphology was also observed by AFM (atomic force microscopy) and voids between SiC and Si interfaces were measured by SEM (scanning electron microscopy). Finally, residual strain and hall mobility was investigated by surface profiler and hall measurement, respectively. From these results, the single crystalline 3C-SiC film had a good crystal quality without defects due to viods, a low residual stress, a very low roughness.