The Hydrogenated Micro-crystalline Silicon(${\mu} c-Si:H$) Films Deposited by Hot Wire CVD Method

Hot Wire CVD법에 의한 수소화된 미세결정 실리콘(${\mu} c-Si:H$) 박막 증착

  • Lee, Jeong-Cheol (Renewable Energy Dept., Korea Institute of Energy Research) ;
  • Song, Jin-Su (Renewable Energy Dept., Korea Institute of Energy Research) ;
  • Park, Lee-Jun (Renewable Energy Dept., Korea Institute of Energy Research)
  • 이정철 (韓國에너지技術硏究所 代替에너지硏究部) ;
  • 송진수 (韓國에너지技術硏究所 代替에너지硏究部) ;
  • 박이준 (韓國에너지技術硏究所 代替에너지硏究部)
  • Published : 2000.08.01

Abstract

This paper presents deposition and characterization of hydrogenated microcrystalline silicon (${\mu}c$ -Si:H) films on low cost glass substrate by Hot Wire CVD(HWCVD). The HWCVD ${\mu}c$ -Si:H films had deposition rates ranging from 2${\AA}$/sec to 35${\AA}$/sec with the variations of preparation conditions, which was 10 times higher than that of the films obtained from the conventional PECVD method. From the Raman spectroscopy, the prepared silicon films were found to be composed of the mixture of crystalline and amorphous phases. The crystalline volume fraction and average crystallite size, obtained from the Raman To mode peak near 520cm$^{-1}$, were 37-63% and 6-10 nm, respectively. The conductivity activation energy($E_a$) of the ${\mu}c$ -Si:H films, representing the difference of conduction band and Fermi level in an intrinsic semiconductors, increased from 0.22eV to 0.68eV with increasing pressure from 30mTorr to 300mTorr. The increase of $E_a$ with pressure indicates that the deposited films have properties close to intrinsic semiconductors, which is also proved with low dark conductivity of the ${\mu}c$ -Si:H deposited at 300mTorr. The tungsten concentration incorporated into films was about $6{\times}10^{16}atoms/cm^3$ in the samples prepared at wire temperature of 1800$^{\circ}C$.

열선 CVD(Hot Wire CVD)를 이용해 유리기판에 미세결정 실리콘(${\mu}c$ -Si:H) 박막을 증착시키고, 증착 조건에 따른 막의 특성변화를 관찰하였다. 열선 CVD법에 의한 ${\mu}c$ -Si:H막의 증착률은 조건변화에 따라 0.2nm/sec에서 3.5nm/sec사이의 값을 가졌으며, 기존의 PECVD법에 비해 10배 이상 높은 값이었다. Raman 특성으로부터 ${\mu}c$ -Si:H막은 비정질과 결정질의 두상이 혼합된 상태임을 알 수 있었으며, 평균 결정 립의 크기는 6-10nm, 결정체적분율은 37~63%범위였다. 막의 전도대와 Fermi 준위의 차를 나타내는 전도 활성화에너지(conductivity activation energy)는 30mTorr에서 0.22eV로 나타났으며, 압력에 따라 증가하여 300mTorr에서는 0.68eV의 값을 가졌다. 막의 활성화 에너지 증가는 높은 압력에서 증착된 막의 특성이 진성(intrisic)에 가까움을 의미하며, 이는 압력증가에 따른 암 전도도의 감소특성으로부터 확인할 수 있었다. 또한 이차이온질량분석으로부터 열선온도 1800$^{\circ}C$에서 증착시킨 막의 텅스텐 함유량은 $6{\times}10^{16}atoms/cm^3$임을 알 수 있었다.

Keywords

References

  1. I. Beckers, N. H. Nickel, W. Pilz and W. Fuhs, 'Influence of hydrogen of the structural order of microcrystalline during the growth process', J. Non-Cryst, Solids, 227-230, pp. 847-851, 1998 https://doi.org/10.1016/S0022-3093(98)00341-X
  2. J. Meier, P. Torres, R. Platz, 'On the way towards high efficiency thin film silicon solar cells by the micromorph concept', Mat. Res. Soc. Symp. Proc. Vol. 420, pp. 3, 1996
  3. E. C. Molenbroek, A H. Mahan, Alan Gallagher, 'Mechanisms influencing hot-wire deposition of hydrogenated amorphous silicon', J. Appl. Phys., 82(4), 15 August 1997. https://doi.org/10.1063/1.365998
  4. H. Matsumura. 'Formation of silicon-based thin films prepared by catalytic chemical vapor deposition(cat-CVD) method', Jpn. J Appl. Phys., Vo. 37, part I. Vol. 6A, pp. 3175-3187, 1998 https://doi.org/10.1143/JJAP.37.3175
  5. T. Ishihara, S. Arirroto, H. Kumabe, 'High efficiency thin film silicon solar cells prepared by zone-melting recrystallization, Appl. Phys, Lett, 63(26), pp. 3604-3606, 1993 https://doi.org/10.1063/1.110062
  6. T. Matsuyama, M Taguchi, M Tanaka, 'High-quality p-type $-{\mu}c-Si:H$ films prepared by the solid phase crystallization method', Jpn. J. Appl. Phys., Vol. 29, No. 12, pp. 2690-2693, 1990 https://doi.org/10.1143/JJAP.29.2690
  7. H Wiesmann, A K Ghosh, T. McMahon, M Strongin, J Appl. Phys. 50, 3752 (1979) https://doi.org/10.1063/1.326284
  8. J, Doyle, R. Robertson, G. H. Lin, M. Z. He and A Gallagher, 'Production of high-quality amorphous silicon films by evaporative silane surface decomposition', J. Appl. Phys., 64(6), p.3215, 1988 https://doi.org/10.1063/1.341539
  9. A. Heya, K. Nakata, A. Izumi and H. Matsumura 'Guide for low-temperature and high-rate deposition of device Quality poly-silicon films by cat-CVD method', Mat. Res. Soc Symp., Vol. 507, pp. 435, 1998
  10. S. C. Saha, J, Guillet, B. Equer and J, E. Bouree, 'Device-quality polycrystalline silicon films deposited at low process temperatures by hot-wire chemical vapor deposition', Thin Solid Films, 337, p.248-252, 1999 https://doi.org/10.1016/S0040-6090(98)01477-1
  11. H. Matsumura. 'Study on catalytic vapor deposition method to prepare hydrogenated amorphous silicon', J Appl. Phys., 65(11), p.4396, 1989 https://doi.org/10.1063/1.343278
  12. Z. Iqbal and S. Veprek, 'Raman scattering from hydrogenated microcrystalline and amorphous silicon', J. Phys. C. Solid .State Phys., 15, pp.377-292, 1982 https://doi.org/10.1088/0022-3719/15/2/019
  13. H. Kakinumi, M. Mohri, M. Sakamoto and T. Tsuruoka, 'Structural properties of polycrystalline silicon films prepared at low temperature by plasma chemical vapor deposition', J. Appl. Phys., 70(12), pp.7374-7381, 1991 https://doi.org/10.1063/1.349732
  14. Y. He, C. Yln, G. Cheng, L. Wang, X. Liu, and G. Y. Hu, 'The structure and properties of nanosize crystalline films', J. Appl. Phys. 75(2), p. 797, 1994 https://doi.org/10.1063/1.356432
  15. P. Brogueria, J. P. Conda, S. Arekat, V. Chu, 'Amorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition at filament temperature between 1500 and $1900^{\circ}C$', J Appl. Phys. 79(11), p.8748, 1996 https://doi.org/10.1063/1.362501
  16. G. N. Parsons, J, J. Boland and J, C. Tsang, 'Selective deposition and bond strain relaxation in silicon PECVD using time modulated silane flow', Jpn. J. Appl. Phys., Vol.31, p.1943, 1992 https://doi.org/10.1143/JJAP.31.1943
  17. A. Matsuda, 'Formation kinetics and control of microcrystallite in ${\mu}c$-Si:H from glow discharge plasma', J. Non-Cryst. Solids., 59 & 60, pp. 767-774, 1983 https://doi.org/10.1016/0022-3093(83)90284-3
  18. P. Alpuim, V. Chu and J. P. Conde, 'Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition', J Appl. Phys., Vol.86, No. 7, p.3812, 1999 https://doi.org/10.1063/1.371292
  19. S. Komuro, Y. Aoyagi, Y. Segawa, S. Namba and A Masuyama, 'The dynamics of photoexcited carriers in microcrystalline silicon', J. Appl. Phys., 56(6), p.1658, 1984 https://doi.org/10.1063/1.334154
  20. Mishima Y., S. Miyazaki, M. Hirose and Y. Osaka, 'Characterization of plasma deposited microcrystalline silicon', Phil. Mag., Vol. B46, p.1, 1982
  21. J. Kanicki, 'Amorphous and microcrystalline semiconductor devices', Artech House press. Vol. II, Chap. 2, 1992
  22. 이정철, 강기환, 김석기, 윤경훈, 송진수, 박이준, '열선 CVD법에 의한 수소화된 미세결정 실리콘 박막 증착', 1999년도 대한전기학회 하계학술대회 논문집, p. 1928, 1999