• 제목/요약/키워드: SiC-C films

검색결과 2,100건 처리시간 0.023초

다공성실리콘 위의 탄화규소 박막의 증착 및 발광특성 (Deposition and Photoluminescence Characteristics of Silicon Carbide Thin Films on Porous Silicon)

  • 전희준;최두진;장수경;심은덕
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.486-492
    • /
    • 1998
  • Silicon carbide (SiC) thin films were deposited on the porous silicon substrates by chemical vapour de-position(CVD) using MTS as a source material. The deposited films were ${\beta}$-SiC with poor crystallity con-firmed by XRD measurement. It was considered that the films showed the mixed characteistics of cry-stalline and amorphous SiC where amorphous SiC where amorphous SiC played a role of buffer layer in interface between as-dep films and Si substrate. The buffer layer reduced lattice mismatch to some extent the generally occurs when SiC films are deposited on Si. The low temperature (10K) PL (phtoluminescence) studies showed two broad bands with peaks at 600 and 720 for the films deposited at 1100$^{\circ}C$ The maximum PL peak of the crystalline SiC was observed at 600 nm and the amrophous SiC of 720 nm was also confirmed. PL peak due the amorphous SiC was smaller than that of the crystalline SiC, PL of porous Si might be disapperared due to densification during heat treatment.

  • PDF

CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성 (Electrical characteristics of in-situ doped polycrystalline 3C-SiC thin films grown by CVD)

  • 김강산;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.199-200
    • /
    • 2009
  • This paper describes the electrical properties of polycrystalline (poly) 3C-SiC thin films with different nitrogen doping concentrations. The in-situ-doped poly 3C-SiC thin films were deposited by using atmospheric-pressure chemical vapor deposition (APCVD) at $1200^{\circ}C$ with hexamethyldisilane (HMDS: $Si_2$ $(CH_3)_6)$ as a single precursor and 0 ~ 100 sccm of $N_2$ as the dopant source gas. The peaks of the SiC (111) and the Si-C bonding were observed for the poly 3C-SiC thin films grown on $SiO_2/Si$ substrates by using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analyses, respectively. The resistivity of the poly 3C-SiC thin films decreased from $8.35\;{\Omega}{\cdot}cm$ for $N_2$ of 0 sccm to $0.014\;{\Omega}{\cdot}cm$ with $N_2$ of 100 sccm. The carrier concentration of the poly 3C-SiC films increased with doping from $3.0819\;{\times}\;10^{17}$ to $2.2994\;{\times}\;10^{19}\;cm^{-3}$, and their electronic mobilities increased from 2.433 to $29.299\;cm^2/V{\cdot}S$.

  • PDF

MTS를 사용한 LPCVD 법에 의한 (100)Si 위의 $\beta$-SiC 증착 및 계면특성 (Interfacial Characteristics of $\beta$-SiC Film Growth on (100) Si by LPCVD Using MTS)

  • 최두진;김준우
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.825-833
    • /
    • 1997
  • Silicon carbide films were deposited by low pressure chemical vapor deposition(LPCVD) using MTS(CH3SICl3) in hydrogen atmosphere on (100) Si substrate. To prevent the unstable interface from being formed on the substrate, the experiments were performed through three deposition processes which were the deposition on 1) as received Si, 2) low temperature grown SiC, and 3) carbonized Si by C2H2. The microstructure of the interface between Si substrates and SiC films was observed by SEM and the adhesion between Si substrates and SiC films was measured through scratch test. The SiC films deposited on the low temperature grown SiC thin films, showed the stable interfacial structures. The interface of the SiC films deposited on carbonized Si, however, was more stable and showed better adhesion than the others. In the case of the low temperature growth process, the optimum condition was 120$0^{\circ}C$ on carbonized Si by 3% C2H2, at 105$0^{\circ}C$, 5 torr, 10 min, showed the most stable interface. As a result of XRD analysis, it was observed that the preferred orientation of (200) plane was increased with Si carbonization. On the basis of the experimental results, the models of defect formation in the process of each deposition were compared.

  • PDF

In-situ 도핑된 M/NEMS용 다결정 3C-SiC 박막의 특성 (Characteristics of in-situ doped polycrystalline 3C-SiCthin films for M/NEMS applications)

  • 김강산;정귀상
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.325-328
    • /
    • 2008
  • This paper describes the electrical properties of poly (polycrystalline) 3C-SiC thin films with different nitrogen doping concentrations. In-situ doped poly 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and $0{\sim}100$ sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in poly 3C-SiC thin films grown on $SiO_2/Si$ substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of poly 3C-SiC thin films decreased from $8.35{\Omega}{\cdot}cm$ with $N_2$ of 0 sccm to $0.014{\Omega}{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819{\times}10^{17}$ to $2.2994{\times}10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to $29.299cm^2/V{\cdot}S$, respectively.

AlN 버퍼층위에 증착된 다결정 3C-SiC 박막의 라만 산란 특성 (Raman Scattering Characteristics of Polycrystalline 3C-SiC Thin Films deposited on AlN Buffer Layer)

  • 정귀상;김강산
    • 한국전기전자재료학회논문지
    • /
    • 제21권6호
    • /
    • pp.493-498
    • /
    • 2008
  • This Paper describes the Raman scattering characteristics of polycrystalline (Poly) 3C-SiC thin films, in which they were deposited on AlN buffer layer by APCVD using hexamethyldisilane (MHDS) and carrier gases (Ar+$H_2$). When the Raman spectra of SiC films deposited on the AlN layer of before and after annealing were worked according to growth temperature, D and G bands of graphite were measured. It can be explained that poly 3C-SiC films admixe with nanoparticle graphite and its C/Si rate is higher than ($C/Si\;{\approx}\;3$) that of the conventional SiC, which has no D and G bands related to graphite. From the Raman shifts of 3C-SiC films deposited at $1180^{\circ}C$ on the AlN layer of after annealing, the biaxial stress of poly 3C-SiC films was obtained as 896 MPa.

CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성 (Mechanical properties of In-situ doped poly crystalline 3C-SiC thin films grown by CVD)

  • 이규환;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.194-194
    • /
    • 2009
  • 3C-SiC thin films are widely used in extreme environments, radio frequency (RF) environments, and bio-materials for micro/nano electronic mechanical systems (M/NEMS). The mechanical properties of 3C-SiC thin films need to be considered when designing M/NEMS, so Young's Modulus and the hardness need to be accurately measured. Young's Modulus and the hardness are influenced by N-doping. In this paper, we show that the mechanical properties of poly (polycrystalline) 3C-SiC thin films are influenced by the N-doping concentration. Furthermore, we measure the mechanical properties of 3C-SiC thin films for N-doping concentrations of 1%, 3%, and 5%, by using nanoindentation. For films deposited using a 1% N-doping concentration, Young's Modulus and the hardness were measured as 270 GPa and 30 GPa, respectively. When the surface roughness of the thin films was investigated by using atomic force microscopy (AFM), the roughness of the 5% N-doped 3C-SiC thin film was the lowest of all the films, at 15 nm.

  • PDF

Epitaxial Growth of $\beta$-SiC Thin Films on Si(100) Substrate without a Carburized Buffer Layer

  • Wook Bahng;Kim, Hyeong-Joon
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.163-168
    • /
    • 1997
  • Most of heteroepitaxial $\beta$-SiC thin films have been successfully grown on Si(100) adapting a carburizing process, by which a few atomic layers of substrate surface is chemically converted to very thin SiC layer using hydrocarbon gas sources. Using an organo-silicon precursor, bis-trimethylsilymethane (BTMSM, [$C_7H_{20}Si_2$]), heteropitaxial $\beta$-SiC thin films were successfully grown directy on Si substrate without a carburized buffer layer. The defect density of the $\beta$-SiC thin films deposited without a carburized layer was as low as that of $\beta$-SiC films deposited on carburized buffer layer. In addition, void density was also reduced by the formation of self-buffer layer using BTMSM instead of carburized buffer layer. It seems to be mainly due to the characteristic bonding structure of BTMSM, in which Si-C was bonded alternately and tetrahedrally (SiC$_4$).

  • PDF

SiNx/Si 구조를 이용한 SiC 박막성장 (Growth of SiC film on SiNx/Si Structure)

  • 김광철;박찬일;남기석;임기영
    • 한국재료학회지
    • /
    • 제10권4호
    • /
    • pp.276-281
    • /
    • 2000
  • Si(111) 표면을 NH$_3$분위기에서 실리콘질화물(SiNx)로 변형시킨 후 탄화규소(silicon carbide, SiC) 박막을 성장하였다. 질화시간이 증가함에 따라 SiC 박막 두께가 감소함을 관찰하였다. 또한 성장변수에 따라 SiC/Si 계면에서 결정결함인 틈새를 없앨 수 있었다. 100nm, 300nm, 500nm의 SiNx/Si 기판 위에 SiC 박막을 성장시켰다. 성장된 SiC 박막들은 모두 [111]면을 따라 성장되었고, SiC 결정들이 원주형 낟알로 성장되었다. SiC/SiNx 계면에서 void를 관찰할 수 없었다. 이러한 실험 결과는 SOI 구조의 산화규소를 SiNx로 대체함으로써 SiC 소자 제작에 응용될 수 있는 방향을 제시하고 있다.

  • PDF

In-situ 도핑량이 다공성 3C-SiC 박막의 특성에 미치는 영향 (Effects of In-situ doping Concentration on the Characteristics of Porous 3C-SiC Thin Films)

  • 김강산;정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.487-490
    • /
    • 2010
  • This paper describes the elecrtical and optical characteristics of $N_2$ doped porous 3C-SiC films. Polycrystalline 3C-SiC thin films are anodized by $HF+C_2H_5OH$ solution with UV-LED exposure. The growth of in-situ doped 3C-SiC thin films on p-type Si (100) wafers is carried out by using APCVD (atmospheric pressure chemical vapor deposition) with a single-precursor of HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$. 0 ~ 40 sccm $N_2$ was used for doping. After the growth of doped 3C-SiC, porous 3C-SiC is formed by anodization with $7.1\;mA/cm^2$ current density for anodization time of 60 sec. The average pore diameter is about 30 nm, and etched area is increased with $N_2$ doping rate. These results are attributed to the decrease of crystallinity by $N_2$ doping. Mobility is dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC are 2.5 eV and 2.7 eV, respectively.

3C-SiC 버퍼층이 Si 기판위에 스퍼터링된 AlN 막의 특성에 미치는 영향 (Effect of 3C-SiC buffer layer on the characteristics of AlN films supttered on Si Substrates)

  • 류경일;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2009
  • Aluminum nitride (AIN) thin films were deposited on a polycrystalline 3C-SiC intermediate layer by a pulsed reactive magnetron sputtering system. Characteristics of the AIN/SiC heterostructures were investigated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The columnar structure of AIN thin films was observed by FE-SEM. The surface roughness of AlN films on the 3C-SiC buffer layer was measured using AFM. The XRD pattern of AlN films on SiC buffer layers was highly oriented at (002). Full width at half maximum (FWHM) of the rocking curve near (002) reflections was $1.3^{\circ}$. The infrared absorbance spectrum indicated that the residual stress of AIN thin films grown on SiC buffer layers was nearly negligible. The 3C-SiC intermediate layers are promising for the realization of nitride based electronic and mechanical devices.

  • PDF