• 제목/요약/키워드: SiC nanotubes

검색결과 68건 처리시간 0.033초

열화학기상증착법에 의한 대면적 실리콘 기판위에서의 탄소나노튜브 성장 (Growth of carbon nanotubes on a large area of Si substrate by the thermal chemical vapor deposition)

  • 김대운;이철진;이태재;박정훈;손권희;강현근;송홍기;최영철;박영수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.954-957
    • /
    • 1999
  • We have synthesized carbon nanotubes by thermal chemical vapor deposition of $C_2$H$_2$ on transition metal-coated silicon substrates. Carbon nanotubes are uniformly synthesized on a large area of the plain Si substrates, different from previously reported porous Si substrates. It is observed that surface modification of transition metals deposited on substrates by either etching with dipping in a HF solution and/or NH$_3$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_2$H$_2$gas. We will demonstrate that the diameters of carbon naotubes can be controlled by applying the different transition metals.

  • PDF

Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

  • Kim, Y.;Song, W.;Lee, S.Y.;Jung, W.;Kim, M.K.;Jeon, C.;Park, C.Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.80-80
    • /
    • 2010
  • Graphene has attracted tremendous attention for the last a few years due to it fascinating electrical, mechanical, and chemical properties. Up to now, several methods have been developed exclusively to prepare graphene, which include micromechanical cleavage, polycrystalline Ni employing chemical vapor deposition technique, solvent thermal reaction, thermal desorption of Si from SiC substrates, chemical routes via graphite intercalation compounds or graphite oxide. In particular, polycrystalline Ni foil and conventional chemical vapor deposition system have been widely used for synthesis of large-area graphene. [1-3] In this study, synthesis of mono-layer graphene on a Ni foil, the mixing ratio of hydrocarbon ($CH_4$) gas to hydrogen gas, microwave power, and growth time were systemically optimized. It is possible to synthesize a graphene at relatively lower temperature ($500^{\circ}C$) than those (${\sim}1000^{\circ}C$) of previous results. Also, we could control the number of graphene according to the growth conditions. The structural features such as surface morphology, crystallinity and number of layer were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), transmission electron microscopy (TEM) and resonant Raman spectroscopy with 514 nm excitation wavelength. We believe that our approach for the synthesis of mono-layer graphene may be potentially useful for the development of many electronic devices.

  • PDF

Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장 (Growth of vertically aligned carbon nanotubes on Co-Ni alloy metal)

  • 이철진;김대운;이태재;박정훈;손권희;류승철;송홍기;최영철;이영희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1504-1507
    • /
    • 1999
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD using $C_2H_2$ gas. Since the discovery of carbon nanotubes, Synthesis of carbon nanotubes for mass production has been achieved by several methods such as laser vaporization arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is of technological importance for applications to FED. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. Despite such breakthroughs in the growth, the growth mechanism of the alignment are still far from being clearly understood. Furthermore, FED has not been clearly demonstrated yet at a practical level. Here, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and then nanotubes are further grown by the cap growth mechanism.

  • PDF

Well aligned carbon nanotubes grown on a large area Si substrate by thermal CVD

  • Lee, Cheol-Jin;Park, Jung-Hoon;Son, Kwon-Hee;Kim, Dae-Woon;Lee, Tae-Jae;Lyu, Seung-Chul;Kang, Seung-Youl;Lee, Jin-Ho;Park, Hyun-Ki;Lee, Chan-Jae;You, Jong-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.57-58
    • /
    • 2000
  • we have grown vertically aligned carbon nanotubes on a large area of Co-Ni codeposited Si substrates by thermal chemical vapor deposition using $C_2H_2$ gas. The carbon nanotubes grown by the thermal chemical vapor deposition are multi-wall structure, and the wall suface of nanotubes is covered with defective carbons or carbonaceous particles. The carbon nanotubes range from 50 to 120 nm in diameter and about 130 ${\mu}m$ in length at $950\;^{\circ}C$. Steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically. The turn-on voltage was about 0.8 $V/{\mu}m$ with a current density of 0.1 ${\mu}A/cm^2$ and emission current reveals the Fowler-Nordheim mode.

  • PDF

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

나노 디바이스 응용을 위한 탄소나노튜브 성장 특성 (Growth of Carbon Nanotubes for Nano Device Application)

  • 박용욱;이승대
    • 한국컴퓨터산업학회논문지
    • /
    • 제8권1호
    • /
    • pp.17-22
    • /
    • 2007
  • 본 연구에서는 선택적 영역에서 반도체 성질을 갖는 탄소나노튜브을 합성하기 위해 촉매의 구조 및 형태가 탄소나노튜브의 성장에 미치는 영향을 연구하였다. CVD 방법으로 Fe와 Mo 전이 금속을 알루미나 나노 입자속에 삽입한 액상형태의 촉매구조와 박막형태의 나노 덩어리 Fe 금속박막을 증착한 후 실리콘 산화막$(SiO_2/Si)$ 기판에 $700^{\circ}C$ 온도에서 에틸렌$(C_2H_4)$가스를 사용하여 디바이스 사이에 정렬된 탄소나노튜브의 합성 연구를 수행 하였으며, 탄소나노튜브의 성장특성은 SEM과 AFM을 이용하여 분석하였다.

  • PDF

선택적 가스 센서를 위한 Au 나노입자가 장식된 TiO2 나노튜브의 합성 (Synthesis of Au-Decorated TiO2 Nanotubes on Patterned Substrates for Selective Gas Sensor)

  • 김도홍;심영석;장호원
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.305-309
    • /
    • 2014
  • Well-ordered $TiO_2$ nanotubes with Au nanoparticles are a desirable configuration to enhance the gas sensing properties such as response and selectivity due to their high surface area to volume ratio and catalytic effect of Au nanoparticles. We have synthesized the well-ordered $TiO_2$ nanotubes directly on a Pt IDEs patterned $SiO_2/Si$ substrate and then decorated Au nanoparticles on inner and outer surface of $TiO_2$ nanotubes using electrodeposition method. The Au-decorated $TiO_2$ nanotubes shows ultrahigh response to $C2_H_5OH$ and the highest increasing ratio to $H_2$ compared with other gases.

Highly Ordered TiO2 nanotubes on pattered Si substrate for sensor applications

  • Kim, Do-Hong;Shim, Young-Seok;Moon, Hi-Gyu;Yoon, Seok-Jin;Ju, Byeong-Kwon;Jang, Ho-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.66-66
    • /
    • 2011
  • Anodic titanium dioxide (TiO2) nanotubes are very attractive materials for gas sensors due to its large surface to volume ratios. The most widely known method for fabrication of TiO2 nanotubes is anodic oxidation of metallic Ti foil. Since the remaining Ti substrate is a metallic conductor, TiO2 nanotube arrays on Ti are not appropriate for gas sensor applications. Detachment of the TiO2 nanotube arrays from the Ti Substrate or the formation of electrodes onto the TiO2 nanotube arrays have been used to demonstrate gas sensors based on TiO2 nanotubes. But the sensitivity was much lower than those of TiO2 gas sensors based on conventional TiO2 nanoparticle films. In this study, Ti thin films were deposited onto a SiO2/Si substrate by electron beam evaporation. Samples were anodized in ethylene glycol solution and ammonium fluoride (NH4F) with 0.1wt%, 0.2wt%, 0.3wt% and potentials ranging from 30 to 60V respectively. After anodization, the samples were annealed at $600^{\circ}C$ in air for 1 hours, leading to porous TiO2 films with TiO2 nanotubes. With changing temperature and CO concentration, gas sensor performance of the TiO2 nanotube gas sensors were measured, demonstrating the potential advantages of the porous TiO2 films for gas sensor applications. The details on the fabrication and gas sensing performance of TiO2 nanotube sensors will be presented.

  • PDF

실리콘 기판의 산화층이 다중벽 탄소나노튜브 성장에 미치는 영향 (Effect of SiO2 Layer of Si Substrate on the Growth of Multiwall-Carbon Nanotubes)

  • 김금채;이수경;김상효;황숙현;;전민현
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.50-53
    • /
    • 2009
  • Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and $SiO_2$/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at $900^{\circ}C$. It was found that the diameter of the MWNTs on the Si substrate sample is approximately $5{\sim}10nm$ larger than that of a $SiO_2$/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.