• Title/Summary/Keyword: SiC diode

Search Result 174, Processing Time 0.026 seconds

Electrical Characteristics of 4H-SiC Junction Barrier Schottky Diode (4H-SiC JBS Diode의 전기적 특성 분석)

  • Lee, Young-Jae;Cho, Seulki;Seo, Ji-Ho;Min, Seong-Ji;An, Jae-In;Oh, Jong-Min;Koo, Sang-Mo;Lee, Deaseok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.367-371
    • /
    • 2018
  • 1,200 V class junction barrier schottky (JBS) diodes and schottky barrier diodes (SBD) were simultaneously fabricated on the same 4H-SiC wafer. The resulting diodes were characterized at temperatures from room temperature to 473 K and subsequently compared in terms of their respective I-V characteristics. The parameters deduced from the observed I-V measurements, including ideality factor and series resistance, indicate that, as the temperature increases, the threshold voltage decreases whereas the ideality factor and barrier height increase. As JBS diodes have both Schottky and PN junction structures, the proper depletion layer thickness, $R_{on}$, and electron mobility values must be determined in order to produce diodes with an effective barrier height. The comparison results showed that the JBS diodes exhibit a larger effective barrier height compared to the SBDs.

Electrical Characteristics Analysis Depending on the Portion of MPS Diode Fabricated Based on 4H-SiC in Schottky Region (4H-SiC 기반으로 제작된 MPS Diode의 Schottky 영역 비율에 따른 전기적 특성 분석)

  • Lee, Hyung-Jin;Kang, Ye-Hwan;Jung, Seung-Woo;Lee, Geon-Hee;Byun, Dong-Wook;Shin, Myeong-Choel;Yang, Chang-Heon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.241-245
    • /
    • 2022
  • In this study, we measured and comparatively analyzed the characteristics of MPS (Merged Pin Schottky) diodes in 4H-SiC by changing the areal ratio between the Schottky and PN junction region. Increasing the temperature from 298 K to 473 K resulted in the threshold voltage shifting from 0.8 V to 0.5 V. A wider Schottky region indicates a lower on-resistance and a faster turn-on. The effective barrier height was smaller for a wider Schottky region. Additionally, the depletion layer became smaller under the influence of the reduced effective barrier height. The wider Schottky region resulted in the ideality factor being reduced from 1.37 to 1.01, which is closer to an ideal device. The leakage saturation current increased with the widening Schottky region, resulting in a 1.38 times to 2.09 times larger leakage current.

A study on CO gas sensing characteristics using SiC Schottky diodes (SiC 쇼트키 장벽 다이오드를 이용한 CO 가스 감지 특성에 관한 연구)

  • 김창교;노일호;조남인;유홍진;기창진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.83-86
    • /
    • 2004
  • A high temperature tolerant microelectronic-based carbon monioxde(CO) gas sensor has been developed. The gas sensing performance has been studied over a wide temperature range$(100-300^\circ{C)}$. The gas sensitivity of the sensor is high, its initial sensing behavior is very fast, and the sensor is reproducible. Pt-SiC and $Pt-SnO_2-SiC$ diodes are fabricated using standard semiconductor processes and their CO gas-sensing behaviors are analyzed as a function of CO gas concentration and temperature by I-V and $\Delta{I-t}$ methods under steady-state and transient conditions. The sensitivity of the device with $Pt-SnO_2$ catalytic gate is higher than that of the Pt gate. The experimental results indicate that $SnO_2$ layer improves the catalytic reaction of the Pt layer.

  • PDF

Elimination of Hole Traps on Si Wafer using Reoxidation method (REOXIDATION법을 이용한 Si WAFER의 HOLE TRAP의 제거)

  • Hong, Soon-Kwan;Ju, Byeong-Kwon;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.433-435
    • /
    • 1987
  • Thermal reoxidation was carried out to eliminate hole traps at the surface of Si wafer. As the result, the good surface state of wafer was obtained and hole traps were eliminate at the inversion layer. For the evaluation of reoxidation effects. MOS diode was fabricated and its C-Y curve was plotted.

  • PDF

Formation of Ohmic Contacts on acceptor ion implanted 4H-SiC (이온 이온주입한 p-type 4H-SiC에의 오믹 접촉 형성)

  • Bahng, W.;Song, G.H.;Kim, H.W.;Seo, K.S.;Kim, S.C.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • Ohmic contact characteristics of Al ion implanted n-type SiC wafer were investigated. Al ions implanted with high dose to obtain the final concentration of $5{\times}10^{19}/cm^3$, then annealed at high temperature. Firstly, B ion ion implanted p-well region were formed which is needed for fabrication of SiC devices such as DIMOSFET and un diode. Secondly, Al implanted high dose region for ohmic contact were formed. After ion implantation, the samples were annealed at high temperature up to $1600^{\circ}C\;and\;1700^{\circ}C$ for 30 min in order to activate the implanted ions electrically. Both the inear TLM and circular TLM method were used for characterization. Ni/Ti metal layer was used for contact metal which is widely used in fabrication of ohmic contacts for n-type SiC. The metal layer was deposited by using RF sputtering and rapid thermal annealed at $950^{\circ}C$ for 90sec. Good ohmic contact characteristics could be obtained regardless of measuring methods. The measured specific contact resistivity for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$ were $1.8{\times}10^{-3}{\Omega}cm^2$, $5.6{\times}10^{-5}{\Omega}cm^2$, respectively. Using the same metal and same process of the ohmic contacts in n-type SiC, it is found possible to make a good ohmic contacts to p-type SiC. It is very helpful for fabricating a integrated SiC devices. In addition, we obtained that the ratio of the electrically activated ions to the implanted Al ions were 10% and 60% for the samples annealed at $1600^{\circ}C\;and\;1700^{\circ}C$, respectively.

  • PDF

Influence of the epitaxial-layer defects on the breakdown characteristics of the SiC schottky diode (에피박막 결함이 탄화규소 쇼트키 다이오드소자의 항복전압 특성에 미치는 영향)

  • Cheong, H.J.;Bahng, W.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.;Lee, Y.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.285-288
    • /
    • 2004
  • 탄화규소 기판의 에피 박막결함으로는 dislocation, micropipe, pin-hole 및 에피층 표면의 여러 가지 결함들이 있다. 이러한 결함들이 탄화규소 쇼트키 다이오드의 항복전압과 어떠한 상관관계가 존재하는지 알아 보기 위해 탄화규소 쇼트키 다이오드를 제작하고, 제작된 소자의 항복전압을 측정하였다. 에피 박막내의 결함 분포를 알아보기 위해 항복전압 측정후 KOH 용액을 이용한 SiC의 에칭을 수행하였으며, 제작된 여러소자들에 대해 항복전압의 분포도와 결함 분포도를 작성, 비교 관찰하였다.

  • PDF

Characterization of Schottky diodes fabricated by various metals on SiC thin film grown by ICP-CVD (ICP-CVD로 성장된 SiC 박막위에 다양한 금속으로 제작된 Schottky diode의 특성 분석)

  • Ko, Suk-Il;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.440-442
    • /
    • 2000
  • We have successfully fabricated SiC Schottky diodes using Al, Ni, Ti metallization systems. Schottky barrier height and other parameter have been measured by using I-V and C-V technique. The measured barreir heights depend on the metal and measurement techniques used. The barrier heights were 1.85eV(Al), 1.63eV(Ni), 0.97eV(Ti). The Ideality factors were 1.16(Al), 1.07(Ni), 1.05(Ti). Thermal stress tests were performed.

  • PDF

Pyrolysis Synthesis of CdSe/ZnS Nanocrystal Quantum Dots and Their Application to Light-Emitting Diodes (CdSe/ZnS 나노결정 양자점 Pyrolysis 제조와 발광다이오드 소자로의 응용)

  • Kang, Seung-Hee;Kumar, Kiran;Son, Kee-Chul;Huh, Hoon-Hoe;Kim, Kyung-Hyun;Huh, Chul;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.379-383
    • /
    • 2008
  • We report on the light-emitting diode (LED) characteristics of core-shell CdSe/ZnS nanocrystal quantum dots (QDs) embedded in $TiO_2$thin films on a Si substrate. A simple p-n junction could be formed when nanocrystal QDs on a p-type Si substrate were embedded in ${\sim}5\;nm$ thick $TiO_2$ thin film, which is inherently an n-type semiconductor. The $TiO_2$ thin film was deposited over QDs at $200^{\circ}C$ using plasma-enhanced metallorganic chemical vapor deposition. The LED structure of $TiO_2$/QDs/Si showed typical p-n diode currentvoltage and electroluminescence characteristics. The colloidal core-shell CdSe/ZnS QDs were synthesized via pyrolysis in the range of $220-280^{\circ}C$. Pyrolysis conditions were optimized through systematic studies as functions of synthesis temperature, reaction time, and surfactant amount.

The Structure and Electrical Properties of Si-ZnO n-n Heterojunctions (Si-ZnO n-n 이종접합의 구조 및 전기적 특성)

  • 이춘호;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 1986
  • Si-ZnO n-n heterojunction diodes were prespared by r.f diode sputtering of the sintered ZnO target on n-type Si single crystal wafers and their structures and electrical properties were studied. The films were grown orientedly with the c-axis of crystallites perpendicular to the substrate surface at low r.f. powder and grown to polycrystalline films with random orientation at high r. f. powder. The crystallite size increased with the increasing substrate temperture The oriented texture films only were used to prepare the photovoltaic diodes and these didoes showed the photovoltaic effect veing positive of the ZnO side for the photons in the wavelength range of 380-1450nm. The sign reversal of phootovoltage which is the property os isotype heterojunction was not observed because of the degeneration of the ZnO films. The diode showed the forward rectification when it was biased with the ZnO side positive. The current-voltage characteristics exhibited the thermal-current type relationship J∝exp(qV/nkT) with n=1.23 at the low forward bias voltage and the tunnelling-current type relationship J∝exp($\alpha$V) where $\alpha$ was constant independent of temperature at the high forward bias voltage. The crystallite size of ZnO films were influenced largely on the photovoltaic properties of diodes ; The diodes with the films of the larger crystallites showed the poor photovoltaic properties. This reason may be cosidered that the ZnO films with the large crystallites could not grow to the electrically continuous films because the thickness of films was so thin in this experiment.

  • PDF