DOI QR코드

DOI QR Code

Pyrolysis Synthesis of CdSe/ZnS Nanocrystal Quantum Dots and Their Application to Light-Emitting Diodes

CdSe/ZnS 나노결정 양자점 Pyrolysis 제조와 발광다이오드 소자로의 응용

  • Kang, Seung-Hee (Division of Nano Engineering, Chungnam National University) ;
  • Kumar, Kiran (Division of Nano Engineering, Chungnam National University) ;
  • Son, Kee-Chul (Division of Nano Engineering, Chungnam National University) ;
  • Huh, Hoon-Hoe (Division of Nano Engineering, Chungnam National University) ;
  • Kim, Kyung-Hyun (Electronics and Telecommunications Research Institute) ;
  • Huh, Chul (Electronics and Telecommunications Research Institute) ;
  • Kim, Eui-Tae (Division of Nano Engineering, Chungnam National University)
  • 강승희 (충남대학교 나노공학부 재료공학과) ;
  • 키란쿠마르 (충남대학교 나노공학부 재료공학과) ;
  • 손기철 (충남대학교 나노공학부 재료공학과) ;
  • 허훈회 (충남대학교 나노공학부 재료공학과) ;
  • 김경현 (한국전자통신연구원) ;
  • 허철 (한국전자통신연구원) ;
  • 김의태 (충남대학교 나노공학부 재료공학과)
  • Published : 2008.07.27

Abstract

We report on the light-emitting diode (LED) characteristics of core-shell CdSe/ZnS nanocrystal quantum dots (QDs) embedded in $TiO_2$thin films on a Si substrate. A simple p-n junction could be formed when nanocrystal QDs on a p-type Si substrate were embedded in ${\sim}5\;nm$ thick $TiO_2$ thin film, which is inherently an n-type semiconductor. The $TiO_2$ thin film was deposited over QDs at $200^{\circ}C$ using plasma-enhanced metallorganic chemical vapor deposition. The LED structure of $TiO_2$/QDs/Si showed typical p-n diode currentvoltage and electroluminescence characteristics. The colloidal core-shell CdSe/ZnS QDs were synthesized via pyrolysis in the range of $220-280^{\circ}C$. Pyrolysis conditions were optimized through systematic studies as functions of synthesis temperature, reaction time, and surfactant amount.

Keywords

References

  1. D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures, p.1, Wiley, Chichester, (1999)
  2. E. T. Kim, Z. H. Chen and A. Madhukar, Appl. Phys. Lett., 79, 3341 (2001) https://doi.org/10.1063/1.1417513
  3. A. P. Alivisatos, Science, 271, 933 (1996) https://doi.org/10.1126/science.271.5251.933
  4. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivistos, Nature, 404, 59 (2000) https://doi.org/10.1038/35003535
  5. C. B. Murray, D. J. Norris and M .G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993) https://doi.org/10.1021/ja00072a025
  6. S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, Nature, 420, 800 (2002) https://doi.org/10.1038/nature01217
  7. M. P. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science, 281, 2013 (1998) https://doi.org/10.1126/science.281.5385.2013
  8. W. C. W. Chan and S. Nie, Science, 281, 2016 (1998) https://doi.org/10.1126/science.281.5385.2016
  9. B. Dubertret, P. Paris, D. J. Norris, V. Noireaux, A. H. Brivanlouand and A. Libchaber, Science, 298, 1759 (2002) https://doi.org/10.1126/science.1077194
  10. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi and K. F. Jensen, Adv. Mater., 15, 1102 (2000) https://doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
  11. W. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 295, 2425 (2002) https://doi.org/10.1126/science.1069156
  12. H. J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith and V. Klimov, Appl. Phys. Lett., 80, 4014 (2002) https://doi.org/10.1063/1.1485125
  13. Y. Chan, J. S. Steckel, P. T. Snee, J. M. Caruge, J. M. Hodgkiss, D. G. Nocera and M. G. Bawendi, Appl. Phys. Lett., 86, 073102 (2005) https://doi.org/10.1063/1.1863445
  14. W. Thompson, Phil. Mag., 42, 449 (1871)
  15. S. H. Kang, K. C. Son, H. H. Huh, C. S. Lee, K. H. Kim, C. Huh and E. T. Kim, Phys. Stat. Sol. (in press)

Cited by

  1. Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time vol.22, pp.3, 2012, https://doi.org/10.3740/MRSK.2012.22.3.140