• Title/Summary/Keyword: SiC content

Search Result 802, Processing Time 0.028 seconds

Distribution Behavior of Bi and Pb Between Molten PbO-SiO2 Slag and Bi (용융(熔融) PbO-SiO2계(系) 슬래그와 Bi 사이의 Bi와 Pb의 분배거동(分配擧動))

  • Kim, Se-Jong;Kim, Eung-Jin;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.65-71
    • /
    • 2012
  • The equilibrium distribution of bismuth and lead between molten PbO-$SiO_2$ slag and bismuth phase was studied in the temperature range of $775^{\circ}C$ to $850^{\circ}C$ in a MgO crucible. The oxygen partial pressure of atmosphere was controlled by $P_{CO2}/P_{CO}$ ratio. The value of $(%PbO)_{slag}/[%Pb]_{metal}$ increased with increasing $SiO_2$ content of slag, and the value of $(%Bi_2O_3)_{slag}/[%Bi]_{metal}$ decreased with increasing $SiO_2$ content of slag. The concentration of Pb in metal increased with increasing temperature. These experimental results agreed well with the thermodynamic prediction.

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).

Microstructure Effects on Bending Strength Characteristics of LPS - SiC Ceramic (LPS - SiC 세라믹스의 굽힘강도 특성에 미치는 미시조직 영향)

  • Yoon, Han-Ki;Jung, Hun-Chae
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.77-81
    • /
    • 2006
  • In this study, monolithic liquid phase sintered SiC (LPS-SiC) was made by the hot pressing method with nano-SiC powder, whose particle size is 30 nm and less on the average. Alumina ($Al_{2}O_{3}$), yttria ($Y_{2}O_{3}$), and silica ($S_{i}O_{2}$) were used for sintering additives. To investigate the effects of $S_{i}O_{2}$, the $Al_{2}O_{3}/Y_{2}O_{3}$ composition was fixed and the ratio of $S_{i}O_{2}$ was changed, with seven different ratios tested. And to investigate the effects of the sintering temperature, the sintering temperature was changed, with $1760^{\circ}C,\;1780_{\circ}C$, and $1800_{\circ}C$ being used with a $S_{i}O_{2}$ ratio of 3 wt%. The materials were sintered for 1 hour at $1760^{\circ}C,\;1780^{\circ}C$ and $1800^{\circ}C$ under a pressure of 20 MPa. The effects on sintering from the sintering system used, as well as from the composition of the sintering additives, were investigated by density measurements. Mechanical properties, such as flexural strength, were investigated to ensure the optimum conditions for a matrix of SiCf/SiC composites. Sintered densityand the flexural strength of fabricated LPS-SiC increased with an increase in sintering temperature. Particularly, the relative density of a sintered body at $1800^{\circ}C$ with a non-content of $S_{i}O_{2}$, a specimen of AYSO-1800, was 95%. Also, flexural strength was about 750MPa.

Correlation between Dielectric Constant and Electronic Polarization by the Reflective Index (굴절률에 의한 유전상수와 전자에 의한 분극에 대한 상관성)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.24-29
    • /
    • 2009
  • The SiOC film as inter layer insulator was researched the reason of the decreasing the dielectric constant by the ionic polarization and electronic polarization, respectively. The dielectric constant was measured using the conventional C-V measurement system, and the reflective index owing to the electronic polarization. Two kinds of dielectric constants were compared and then induced the origin of low-k materials. The chemical properties of the SiOC film were analyzed by the FTIR spectra, and the carbon content was obtained by the deconvoluted data of FTIR spectra. The variation of the carbon content tended to similar to the trend of reflective index, but was in inverse proportion to the dielectric constant. The effect of the electronic polarization did not affect the decreasing the dielectric constant, however the ionic polarization decreased effectively the dielectric constant of the SiOC film.

Effects of Silicone Contents and Flow Rates on the Formation and Mechanical Properties of Hard Anodized Film of Al-Si alloys (Al-Si 합금의 경질양극산화피막의 형성과 기계적 성질에 미치는 Si 함량과 전해액의 유속의 영향)

  • 김경택;안명규;이진형;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.4
    • /
    • pp.179-186
    • /
    • 1991
  • The effects of silicone contents and flow rates(agitation rates) of electrolyte on the formation and mechanical properties of hard anodized film of Al-Si alloy have been studied in 12% H2SO4 + 1% Oxalic acid with varying the silicone contents in the rance of 0 to 11.6% and the flow rates of electrolyte in the range of 0 to 90cm/sec. The film forming voltage required to maintain an equivalent current density significantly increase with the silicone content of Al-Si alloys due to a low conductivity of silicone. Hardness and wear resistance of the anodized film of Al-Si alloys decreases wit increasing the silicone content. The increase in the flow rate of electrolyte has a similar influence on the formation and mechanical properties of anodized film as does the decrease in bath temperature. Hardness of anodized film is rapidly increased with the flow rate being increased from 10cm/sec. It is observed that the increase in the flow rate from 11cm/sec. It is observed that the increase in the flow from 11cm/sec to 48cm/sec is more effective in enhancing the hardness of film than is the decrease in bath temperature from 1$0^{\circ}C$ to $0^{\circ}C$.

  • PDF

Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD (플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과)

  • 김현철;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

  • PDF

Study on the oxidation behavior of Poly $Si_{1-x}Ge_x$ films (Poly $Si_{1-x}Ge_x$ 박막의 산화 거동 연구)

  • 강성관;고대홍;오상호;박찬경;이기철;양두영;안태항;주문식
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.346-352
    • /
    • 2000
  • We investigated the oxidation behavior of poly $Si_{1-x}Ge_x$ films (X=0.15, 0.42) at $700^{\circ}C$ in wet oxidation ambients and analyzed the oxide by XPS, RBS, and cross-sectional TEM. In the case of poly $Si_{0.85}Ge_{0.15}$ films, $SiO_2$ was formed on the poly $Si_{1-x}Ge_x$ films and Ge was rejected from growing oxide, subsequently leading to the increase of Ge content. In the case of poly $Si_{0.58}Ge_{0.42}$ films, we found that $SiO_2-GeO_2$ were formed on the poly $Si_{1-x}Ge_x$ films due to high Ge content. Finally, we proposed the oxidation model of poly $Si_{1-x}Ge_x$ films.

  • PDF

The characteristics of MIS BST thin film capacitor

  • Park, Chi-Sun;Kim, In-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.1
    • /
    • pp.38-42
    • /
    • 2001
  • Electric and dielectric(Ba,Sr)$TiO_3$[BST] thin films for emtal-Insulator-Semiconductor(MIS) capacitors have been studied. BST thin films wre deposted on p-Si(100) substrates bythe RF magnetron sputtering with tempratue range of 500~$600^{\circ}C$. The dielectric properties of MIS capacitors consisting of Al/BST/$SiO_2$/Si sandwich structure were evaluated ot redcue the leakage current density. The charge state densities of the MIS capacitors were determined by high frequency (1 MHz) C-V measurement. In order to reduce the leakage current in MIS capacitor, high quality $SiO_2$ layer was deposited on bare p-Si substrate. Depending on the oxygen pressure and substrate temperature both positive and negative polarities of effective oxide charge in the MIS capacitors were evaluated. It is considered that the density of electronic states, generated at the BST/$SiO_2$/p-Si interface due to the asymmetric structure within BST/$SiO_2$/Si structure, and the oxygen vacancy content has influence on the behavior of oxide charge.

  • PDF

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Thermal Sprayed AlSiMg/TiC Composite Coatings : Fabrication of Powder and Characteristics of Coatings (I) (AlSiMg/TiC 복합 용사 피막 : 분말제조 및 피막 특성(I))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.98-104
    • /
    • 2000
  • Aluminum alloys are being employed in automobile parts as strive to reduce overall vehicle weight to meet demands for improved fuel economy and reduction in vehicle emissions. Al-based composites reinforced with ceramic ($Al_2O_3,\;SiC,\;TiC\;and\;B_4C$) applications in a variety of components in automotive engines, such as liners, where the tribological properties of the material are important. In this study, Al-base composites reinforced with TiC particle powders has been developed for producing plasma spray coatings. The composite plasma spray powders were prepared Al-13Si-3Mg(wt%) alloy with TiC(40, 60 and 80wt%) particles ($0.2~5{\mu}textrm{m}$) by drum type ball milling. The composite powders ($36~76{\mu}textrm{m}$) were sprayed with plasma torch. Plasma sprayed coatings were heat-treated at $500^{\circ}C$ for 3 hours. The wear resistances of the plasma sprayed coatings were found to decrease with increasing TiC content and improved with heat treatment. AlSiMg-40% TiC heat-treated coatings were showed the best wear resistance in this study.

  • PDF