DOI QR코드

DOI QR Code

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran (Department of Chemical Engineering, Kangwon National University) ;
  • Won, Ji-Hye (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Sang-Young (Department of Chemical Engineering, Kangwon National University)
  • Received : 2011.02.28
  • Accepted : 2011.03.19
  • Published : 2011.03.31

Abstract

We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Keywords

References

  1. P. Arora and Z. Zhang, Chem. Rev. 104 (2004) 4419. https://doi.org/10.1021/cr020738u
  2. S. S. Zhang, J. Power Sources 164 (2007) 351. https://doi.org/10.1016/j.jpowsour.2006.10.065
  3. P. Kritzer, J. Power Sources 161 (2006) 1335. https://doi.org/10.1016/j.jpowsour.2006.04.142
  4. P. Kritzer and J. A. Cook, J. Power Sources 161 (2006) 1335. https://doi.org/10.1016/j.jpowsour.2006.04.142
  5. T.H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase and T. Sakai, J. Power Sources 181 (2008) 155. https://doi.org/10.1016/j.jpowsour.2008.03.010
  6. S. Augustin, V. Hennige, G. Hoerpel and C. Hying, Desalination 146 (2002) 23. https://doi.org/10.1016/S0011-9164(02)00465-4
  7. T. H. Cho, M. Tanaka, H. Ohnish, Y. Kondo, M. Yoshkazu, T. Nakamura and T. Sakai, J. Power Sources 195 (2010) 4272. https://doi.org/10.1016/j.jpowsour.2010.01.018
  8. J. K. Kim, G. Cheruvally, X. Li, J. H. Ahn, K. W. Kim and H. J. Ahn, J. Power Sources 178 (2008) 815. https://doi.org/10.1016/j.jpowsour.2007.08.063
  9. H. R. Jung, D. H. Ju, W. J. Lee, X. Zhang and R. Kotek, Electrochim. Acta, 54 (2009) 3630. https://doi.org/10.1016/j.electacta.2009.01.039
  10. C. Yang, Z. Jia, Z. Guan and L. Wang, J. Power Sources, 189 (2009) 716. https://doi.org/10.1016/j.jpowsour.2008.08.060
  11. H. S. Jeong, J. H. Kim and S. Y. Lee, J. Mater. Chem. 20 (2010) 9180. https://doi.org/10.1039/c0jm01086c
  12. S. Jiang, Y. Markusya, V. Pikus and V. Tsukuruk, Nature Mater. 3 (2004) 721. https://doi.org/10.1038/nmat1212
  13. K. E, Mueggenburg, X. M. Lin, R. H. Godsmith and H. M. Jaeger, Nature Mater. 6 (2007) 656. https://doi.org/10.1038/nmat1965
  14. C. Li and L. Qi, Adv. Mater. 22 (2010) 1494. https://doi.org/10.1002/adma.200903044
  15. J. H. Park, J. H. Cho, W. Park, D. Ryoo, S. J. Yoon, J. H. Kim, Y. U. Jeong and S. Y. Lee, J. Power Sources 195 (2010) 8306. https://doi.org/10.1016/j.jpowsour.2010.06.112
  16. H. S. Jeong, D. W. Kim, Y. U. Jeong, and S. Y. Lee, J. Power Sources 195 (2010) 6116. https://doi.org/10.1016/j.jpowsour.2009.10.085
  17. H. S. Jeong, S. C. Hong and S. Y. Lee, J. Membr. Sci. 364 (2010) 177. https://doi.org/10.1016/j.memsci.2010.08.012

Cited by

  1. Development and characterization of silica tube-coated separator for lithium ion batteries vol.284, 2015, https://doi.org/10.1016/j.jpowsour.2015.02.126
  2. Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries vol.298, 2015, https://doi.org/10.1016/j.jpowsour.2015.08.008
  3. A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator vol.266, 2014, https://doi.org/10.1016/j.jpowsour.2014.04.151
  4. Composite melt-blown nonwoven fabrics with large pore size as Li-ion battery separator vol.41, pp.1, 2016, https://doi.org/10.1016/j.ijhydene.2015.09.130