• Title/Summary/Keyword: Si micromachining

Search Result 85, Processing Time 0.031 seconds

Film Bulk Acoustic Wave Resonator using surface micromachining (표면 마이크로머시닝을 이용한 압전 박막 공진기 제작)

  • 김인태;박은권;이시형;이수현;이윤희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.156-159
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be fabricated as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible Suspended FBAR using surface micromachining. It is possible to make Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$membrane by using surface micromachining and its good effect is to remove the substrate silicon loss. FBAR was made on 2$\mu\textrm{m}$ multi-layered membrane using CVD process. According to our result, Fabricated film bulk acoustic wave resonator has two adventages. First, in the respect of device Process, our Process of the resonator using surface micromachining is very simple better than that of resonator using bull micromachining. Second, because of using the multiple layer, thermal expansion coefficient is compensated, so, the stress of thin film is reduced.

  • PDF

The Fabrication of SiOB by using Bulk Micromachining Process for the Application of Slim Pickup (벌크 마이크로머시닝 기술을 이용한 박형 광픽업용 SiOB 제작)

  • Choi, Seog-Moon;Park, Sung-Jun;Hwang, Woong-Lin
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.175-181
    • /
    • 2005
  • SiOB is an essential part of slim optical pickup, where the silicon mirror, LD stand, silicon PD are integrated and LD is flip chip bonded. SiOB is fabricated with bulk micromachining. Especially the fabrication of silicon wafer with stepped concave areas has many extraordinary difficulties. As a matter of fact, experiences and knowledges are rare in the fabrication of the highly stepped silicon wafer. The difficulties occurring in the integration of PD and SiOB, and highly stepped patterning, and silicon mirror roughness and how-to-solve will be discussed.

  • PDF

Fabrication of the Acceleration Sensor Body of Glass by Powder Blasting (미립분사가공을 이용한 유리 소재의 가속도 센서 구조물 성형)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.146-153
    • /
    • 2006
  • Acceleration sensors have widely been used in the various fields of industry. In recent years, micromachining accelerometers have been developed and commercialized by the micromachining technique or MEMS technique. Typical structure of such sensors consist of a cantilever beam and a vibrating mass fabricated on Si wafers using etching. This study investigates the feasibility of powder blasting technique for microfabrication of sensor structures made of the pyrex glass alternating the existing Si based acceleration sensor. First, as preliminary experiment, effect of blasting pressure, mass flow rate of abrasive and no. of nozzle scanning on erosion depth of pyrex and soda lime glass is studied. Then the optimal blasting conditions are chosen for pyrex sensor. Structure dimensions of designed glass sensor are 2.9mm and 0.7mm for the cantilever beam length and width and 1.7mm for the side of square mass. Mask material is from aluminium sheet of 0.5mm in thickness. Machining results showed that tolerance errors of basic dimensions of glass sensor ranged from 3um in minimum to 20um in maximum. This results imply the powder blasting can be applied for micromachining of glass acceleration sensors alternating the exiting Si based sensors.

Excimer laser micromachining of silicon in liquid phase (액상에서의 엑시머 레이저 실리콘 미세가공)

  • Jang, Deok-Suk;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.12-18
    • /
    • 2008
  • Laser micromachining is a promising technique to fabricate the micro-scale devices. However, there remains important challenges to reducethe redeposition of ablated materials around the laser irradiated zone and to get a smooth surface, especially for metal and semiconductor materials. To achieve the high-quality micromachined devices, various methods have been developed. Liquid-assisted micromachining can be a good solution to overcome the previously mentioned problems. During the laser ablation process, the liquid around the solid sample dramatically changes the ablation characteristics, such as ablation rate, surface profile, formation of debris, and so on. In this investigation, we conducted the laser micromachining of Si in various liquid environmental conditions, such as liquid types, liquid thickness. In addition, using nanoscale time-resolved shadowgraphy technique, we observed the ablation process in liquid environments to understand the mechanism of liquid-assisted laser micromachining.

  • PDF

Surface Micromachining of TEOS Sacrificial Layers by HF Gas Phase Etching (HF 기상식각에 의한 TEOS 희생층의 표면 미세가공)

  • 장원익;이창승;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.725-730
    • /
    • 1996
  • The key process in silicon surface micromachining is the selective etching of a sacrificial layer to release the silicon microstructure. The newly developed anhydrous HF/$CH_3$OH gas phase etching of TEOS (teraethylorthosilicate) sacrificial layers onto the polysilicon and the nitride substrates was employed to release the polysilicon microstructures. A residual product after TEOS etching onto the nitride substrate was observed on the surface, since a SiOxNy layer is formed on the TEOS/nitride interface. The polysilicon microstructures are stuck to the underlying substrate because SiOxNy layer does not vaporize. We found that the only sacrificial etching without any residual product and stiction is TEOS etching onto the polysilicon substrate.

  • PDF

Fabrication process for micro magnetostrictive sensor using micromachining technique (Micromachining을 이용한 초소형 자왜 센서 제작공정 연구)

  • 김경석;고중규;임승택;박성영;이승윤;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.81-89
    • /
    • 1999
  • The fabrication process for miniaturizing the Electronic Article Surveillance (EAS) sensor was studied using micromachining technique. Two types of sensor structure, free standing membrane type and diving beard type, were proposed and researched for establishing the fabrication process. The membrane type structure was easy to change the sensor shape but had the limitation for miniaturizing, because the size of the sensor depends on the silicon substrate thickness. The diving board type structure has the advantage of miniaturization and of free motion. Since the elastic modulus is not trio high, SiN film is expected to be adequate for the supporting membrane of magnetic sensor. The selectivity of $H_2O_2$for sputtered W with respect to Fe-B-Si, which was studded for magnetic sensor materials, was high enough to be removed after using as a protection layer. Therefore, the diving board type process using the silicon nitride film for the supporter of the sensor material and the sputtered W for protection layer is expected to be useful fur miniaturizing the Electronic Article Surveillance (EAS) sensor.

  • PDF

Characteristics of Poly-Oxide of New Sacrificial Layer for Micromachining (마이크로머시닝을 위한 새로운 희생층인 다결정-산화막의 특성)

  • Hong, Soon-Kwan;Kim, Chul-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 1996
  • Considering that polycrystalline silicon, a structural material of the micromachining, is affected by a sacrificial oxide layer, the poly-oxide obtained by the thermal oxidation of polycrystalline silicon is newly proposed and estimated as the sacrificial oxide layer. The grain size of the polycrystalline silicon grown on the poly-oxide is larger than that of poly crystalline silicon grown on the conventional sacrificial oxide layer. As a result of XRD, increase of (111) textures and formation of additional (220) textures are observed on the polycrystaIline silicon deposited on the poly-oxide. Also, the polycrystalline silicon grown on the poly-oxide represents small and uniform stress.

  • PDF

Fabrication of 3-Dimensional Microstructures for Bulk Micromachining by SDB and Electrochemical Etch-Stop (SDB와 전기화학적 식각정지에 의한 벌크 마이크로머신용 3차원 미세구조물 제작)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.958-962
    • /
    • 2002
  • This paper reports on the fabrication of free-standing microstructures by DRIE (deep reactive ion etching). SOI (Si-on-insulator) structures with buried cavities are fabricated by SDB (Si-wafer direct bonding) technology and electrochemical etch-stop. The cavity was formed the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the formed cavity under vacuum condition at -760 mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing (100$0^{\circ}C$, 60 min.), the SDB SOI structure with a accurate thickness and a good roughness was thinned by electrochemical etch-stop in TMAH solution. Finally, it was fabricated free-standing microstructures by DRIE. This result indicates that the fabrication technology of free-standing microstructures by combination SDB, electrochemical etch-stop and DRIE provides a powerful and versatile alternative process for high-performance bulk micromachining in MEMS fields.

Fabrication and Characterization of Suspended-type Thin Film Resonator Using SOI-Micromachining Process (SOI 마이크로머시닝 공정을 이용한 Suspended-type 박막공진기의 제작 및 특성평가)

  • Ju, Byeong-Kwon;Kim, Hyun-Ho;Lee, Si-Hyung;Lee, Jeon-Kook;Kim, Soo-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.303-306
    • /
    • 2001
  • STFR were fabricated on the floating membrane which was formed by SOI-micromachining process. The floating membranes having a thickness range of $3{\sim}15{\mu}m$ could be simply formed by micromachining the directly-bonded and thinned SOI substrate. The STFR device fabricated on the $15{\mu}m$-thick membrane showed resonance frequency of fr = 1.65 GHz, coupling coefficient of Keff2 = 2.4 %, and series and parallel quality factors of Qs = 91.7 and Qp = 87.7, respectively.

  • PDF

Film Bulk Acoustic Wave Resonator for Bandpass Filter (밴드패스필터 구현을 위한 압전박막공진기 제작)

  • 김인태;박윤권;이시형;이윤희;이전국;김남수;주병권
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.597-600
    • /
    • 2002
  • Film Bulk Acoustic wave Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size and low cost, high Q RF circuit elements with wide applications in communications area. This paper presents a MMIC compatible suspended FBAR using surface micromachining. Membrane is composed $Si_3N_4SiO_2Si _3N_4$ multi layer and air gap is about 50${\mu}{\textrm}{m}$. Firstly, We perform one dimensional simulation applying transmission line theorem to verify resonance characteristic of the FBAR. Process of the FBAR is used MEMS technology. Fabricated FBAR resonate at 2.4GHz, $K^2_{eff}$ and Q are 4.1% and 1100.