• Title/Summary/Keyword: Si membrane

Search Result 395, Processing Time 0.031 seconds

Study on Piezoresistive Humidity Sensor using Polycrystalline Silicon with Membrane (박막구조를 가진 폴리실리콘 압저항형 습도센서의 연구)

  • Park, Sung-Il;Park, Se-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1422-1424
    • /
    • 1994
  • This paper deals with piezoresistive humidity sensor using polycrystalline silicon (Poly-Si ) with membrane in sensors of semiconductor. Poly-Si piezoresistors which have no temperature dependancy are deposited on silicon wafer, membrane is formed with micromachining technology, then polyimide is formed as a hygroscopic layer. Whereas the principle of conventional humidify sensors are based on the change in electrical properties of the material, the humidity induced volume change of a polyimide layer leads to a deformation of a silicon membrane in this case. This deformation is transformed into an output voltage by Poly-Si piezoresistive. Wheatstone bridge. Fabricated piezoresistive humidity sensors showed good linearity, response time, and long term stability.

  • PDF

Fabrication of an Optical Hydrogen Sensor Based on 3C-SiC Photovoltaic Effect and Its Characteristics (3C-SiC 광기전 특성 기반 광학식 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.283-286
    • /
    • 2012
  • This paper presents the optical hydrogen sensor based on transparent 3C-SiC membrane and photovoltaic effect. Gasochromic materials of Pd and Pd/$WO_3$ were deposited by sputter on 3C-SiC membrane for gas sensing area. Gasochromic materials change to transparency by exposure to hydrogen. The variations of light intensity by hydrogen generate the photovoltaic of P-N junction between N-type 3C-SiC and P-type Si. Single layer of Pd shows higher photovoltaic compared with Pd/$WO_3$. However, phase transition from ${\alpha}$ to ${\beta}$ is shown at 6 %. Pd/$WO_3$ structure show the more linear response to hydrogen range of 2 % ~10 %. Also, almost 2 times fast response and recovery characteristics are shown at Pd/$WO_3$. These fast performances are come from the fact that Pd promoted the chemical reaction between hydrogen and $WO_3$.

Process Developmentof Wastewater Contaning Silicon Fine Particles by Ultrafiltration for Water Reuse (한외여과에 의한 Si 미립자 함유폐수 재이용 공정개발)

  • 전재홍;함용규;이석기;남석태;최호상
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.87-88
    • /
    • 1998
  • 1. 서론 : 반도체 제조공정중의 공정폐수로 발생되는 Si 미립자 함유폐수는 많은 양의 초순수와 1차세정 폐수로 방류되므로 유가물인 Si가 상당량 함유되어 있다. 이러한 폐수의 재이용을 위해 본 연구에서는 미립자 Si를 농축, 회수하고 양질의 처리수를 얻고자 한외여과막 분리공정을 적용하였고, 한외여과막 공정의 조업변수를 평가하여 air back flushing에 의한 막세척 효율 및 fouling 제어특성, 각각의 membrane이 갖는 분획분자량 특성에 따른 처리수 수질 및 flux 비교를 통해 scale up할 경우 필요한 조업변수를 얻고자 실시하였다.

  • PDF

Fabrication of the pyramid-type silicon tunneling devices for displacement sensor applications (변위센서응용을 위한 피라미드형 실리콘 턴널링소자의 제조)

  • Ma, Tae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.177-181
    • /
    • 2000
  • The tunneling current is exponentially dependent on the separation gap between a pair of conductors. The detection of displacement can be, therefore, carried out by measurment of a variation in the tunneling current. In this experiment, we fabricated pyramid-type silicon tunneling devices in which a tunneling current flow between a micro-tip and $Si_3N_4$ thin film membrane. A MEMS process was used for the fabrication of the tunneling devices. The micro-tips were formed on Si wafers by undercutting a differently oriented square of $SiO_2$ with KOH. The stiffness of the $Si_3N_4$ films were observed and the model for the stiffness calculation, which is useful in predicting the stiffness even when the stiffness ranges beyond the scope of the normal experimental condition, was suggested.

  • PDF

The Fabrication of Micro-heaters with Low Consumption Power Using SOI and Trench Structures and Its Characteristics (SOI와 트랜치 구조를 이용한 초저소비전력형 미세발열체의 제작과 그 특성)

  • 정귀상;홍석우;이원재;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • This paper presents the optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro elelctro mechanical system) applications usign SOI (Si-on-insulator) and trench structures. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10㎛ thick Si membrane with oxide-filled trenches in the SOI membrane rim. The micro-heater was fabricated with Pt-RTD (resistance thermometer device) on the same substrate by suing MgO as medium layer. The thermal characteristics of the micro-heater wit the SOI membrane is 280$\^{C}$ at input power 0.9W; for the SOI membrane with 10 trenches, it is 580$\^{C}$ due to reduction of the external thermal loss. Therefore, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro-thermal sensors and actuators.

  • PDF

Direct Ethanol Fuel Cell (DEFC) Fabricated with Ceramic Membrane (세라믹 멤브레인 활용 직접 에탄올 연료전지)

  • Jeong, Jae Geun;Yun, Young Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.4
    • /
    • pp.419-424
    • /
    • 2014
  • Direct ethanol fuel cell has been fabricated with ceramic membrane. A porous silicon carbide (SiC) membrane having approximately 30% porosity has been applied for a direct ethanol proton exchange membrane (DE-PEM) fuel cell. A horizontal type cell having Pt ($18mg/cm^2$) catalyst layer on both side of the ceramic membrane was used for the demonstration test. The ethanol oxidation based-fuel cell stack showed very high voltage (1.289V) and measurable current level (68mA) even though at room temperature.

Hydrogen Permselective Membrane using the Zirconia Coated Support (지르코니아 코팅 지지체를 이용한 수소분리막)

  • Choi, Ho-Sang;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.210-216
    • /
    • 2010
  • The hydrogen permselective membrane were prepared by chemical vapor deposition (CVD) aiming at the applications to hydrogen iodide decomposition in the thermochemical IS process, and it was evaluated for the possibility as a separation membrane. An electron probe X-ray microanalyzer (EPMA) and SEM picture were used to analyze the morphology and structure of the prepared membranes. It was confirmed that Zr-Si-O layer exist in the surface of the prepared membrane using zirconia coated support. Single-component permeance to $H_2$ and $N_2$ were measured at $300{\sim}600^{\circ}C$. Hydrogen permeance through the Z-1 membrane at a permeation temperature of $600^{\circ}C$ was about $1{\times}10^{-7}\;mol{\cdot}Pa^{-1}{\cdot}m^{-2}{\cdot}s^{-1}$. The selectivities of $H_2/N_2$ at $600^{\circ}C$ were 5.0 and 5.75 for Z-1 and Z-2 membrane, respectively.

Characteristics of $SiO_2$ Scale Removal by Chemical Cleaning in Reverse Osmosis Membrane Process (역삼투막 공정에서 화학적 세정에 의한 $SiO_2$ scale 제거특성)

  • DockKo, Seok;Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • Reverse osmosis (RO) membranes have been widely used for desalination as well as water and wastewater treatment facilities. Cleaning process is important to maintain stable operation as well as prevention of membrane fouling. Purpose of this research is to analyze electrostatistic and chemical characteristics after cleaning of RO membrane against $SiO_2$ scale. Four RO membranes of polyamide are used and examined about effect of chemical cleaning. EDTA (ethylene diamine tetraacetic acid) and SDS (sodium dodecil sulfate) and NaOH are applied for cleaning process after operation in synthetic water. Then, cleaning was performed with chemicals such concentration as 6hr, 12hr and 24hr, respectively. As a result, transmittances of FT-IR of four membranes are compared at each cleaning concentration. Ta/Tv shows difference of chemical composition between new membrane and cleaning membrane after cleaning. Type B of RO membrane is turned out to be most vulnerable to cleaning among four membranes. In terms of zeta potential, new membrane has -16 mV to +6 mV on pH while scaled membrane has -18 mV to 2 mV. However, it changed -23mV to 0.9 mV after cleaning. In comparison with existing salt rejection of RO membranes after cleaning, the rejection of the membranes goes down 0.7% maximum. Though cleaning changes the characteristics of membrane surface, it does not greatly affect salt rejection. pH is a critical factor to flux change in PA (polyamide) membrane.