DOI QR코드

DOI QR Code

Direct Ethanol Fuel Cell (DEFC) Fabricated with Ceramic Membrane

세라믹 멤브레인 활용 직접 에탄올 연료전지

  • Jeong, Jae Geun (Department of Hydrogen & Fuel Cell Technology, Dongshin University) ;
  • Yun, Young Hoon (Department of Hydrogen & Fuel Cell Technology, Dongshin University)
  • 정재근 (동신대학교 수소에너지학과) ;
  • 윤영훈 (동신대학교 수소에너지학과)
  • Received : 2014.05.12
  • Accepted : 2014.08.31
  • Published : 2014.08.30

Abstract

Direct ethanol fuel cell has been fabricated with ceramic membrane. A porous silicon carbide (SiC) membrane having approximately 30% porosity has been applied for a direct ethanol proton exchange membrane (DE-PEM) fuel cell. A horizontal type cell having Pt ($18mg/cm^2$) catalyst layer on both side of the ceramic membrane was used for the demonstration test. The ethanol oxidation based-fuel cell stack showed very high voltage (1.289V) and measurable current level (68mA) even though at room temperature.

Keywords

References

  1. A. Kirubakaran, Shailendra Jain, R.K. Nema, A review on fuel cell technologies and power electronic interface, Renew. Sust. Energ. Rev., Vol. 13, No. 9, 2009, p. 2430. https://doi.org/10.1016/j.rser.2009.04.004
  2. E. Antolini, Catalysts for direct ethanol fuel cells, J. Power Sources, Vol. 170, No. 1, 2007, p. 1. https://doi.org/10.1016/j.jpowsour.2007.04.009
  3. R.I. Jafri, S. Ramaprabhu, Multi walled carbon nanotubes based micro direct ethanol fuel cell using printed circuit board technology, Int. J. Hydrogen Energy, Vol. 35, No. 3, 2010, p. 1339. https://doi.org/10.1016/j.ijhydene.2009.11.067
  4. M. Sanchez, A.R. Pierna, N. Ruiz, J. Barroso, J.J. Del Val, Amorphous catalysts based on (NiNb)99 (Pt X Y)1 for DAFC using ethanol and bioethanol as fuels, Int. J. Hydrogen energy, Vol. 39, No. 8, 2014, p. 3991. https://doi.org/10.1016/j.ijhydene.2013.05.088
  5. S. Song, P. Tsiakaras, Recent progress in direct ethanol proton exchange membrane fuel cells (DEPEMFCs), Appl. Catal. B: Environ. Vol. 63, No. 3-4, 2006, p. 187. https://doi.org/10.1016/j.apcatb.2005.09.018
  6. G. Andreadis, V. Stergiopoulos, S. Song, P. Tsiakaras, Direct ethanol fuel cells: The effect of the cell discharge current on the products distribution, Appl. Catal. B, Vol 100, No. 1-2, P. 157. https://doi.org/10.1016/j.apcatb.2010.07.025
  7. Z. Wang, G. Yin, J. Zhang, Y. Sun, P. Shi, Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell, J. Power Sources Vol. 160, No. 1, 2006, p. 37. https://doi.org/10.1016/j.jpowsour.2006.01.021
  8. W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xin, Pt based anode catalysts for direct ethanol fuel cells, Appl. Catal. B: Environ. Vol. 46, No. 2, 2003, p. 273. https://doi.org/10.1016/S0926-3373(03)00218-2
  9. F. Colmati, E. Antolini, E. Gonzalez, Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: Effect of thermal treatment Appl. Catal. B: Environ. Vol. 73, No. 1-2 2007, p. 106. https://doi.org/10.1016/j.apcatb.2006.06.013
  10. S.Q. Song, W.J. Zhou, Z.H. Zhou, L.H. Jiang, G.Q. Sun, Q. Xin, V. Leontidis, S. Kontou, P. Tsiakaras, Direct ethanol PEM fuel cells: The case of platinum based anodes, Int. J. Hydrogen energy, Vol. 30, No. 9, 2005, p. 995. https://doi.org/10.1016/j.ijhydene.2004.11.006
  11. J. Tayal, B. Rawat, S. Basu, 'Bi-metallic and trimetallic Pt-Sn/C, Pt-Ir/C, Pt-Ir-Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell', Int. J. Hydrogen energy, Vol. 36, No. 22, 2011, p. 14884. https://doi.org/10.1016/j.ijhydene.2011.03.035
  12. C. Lamy, A. Lima, V. Lerhun, F. Delime, C. Coutanceau, J.M. Leger, Recent advances in the development of direct alcohol fuel cells (DAFC), J Power Sources Vol. 105, No. 1, 2002, p. 283. https://doi.org/10.1016/S0378-7753(01)00954-5
  13. V.B. Oliveira, C.M. Rangel, F.R. Pinto, Water management in direct methanol fuel cells. Int. J. Hydrogen Energy, Vol. 34, No. 19, 2009, p. 8245. https://doi.org/10.1016/j.ijhydene.2009.07.111
  14. L. An, T.S. Zhao, Performance of an alkaline-acid direct ethanol fuel cell, Int. J. Hydrogen Energy, Vol. 36, No. 16, 2011, p. 9994. https://doi.org/10.1016/j.ijhydene.2011.04.150
  15. G.M. Andreadis, A.K.M. Podias, P.E. Tsiakaras, The effect of the parasitic current on the Direct Ethanol PEM Fuel Cell Operation, J. Power Sources, Vol. 181, No. 2, 2008, p. 214. https://doi.org/10.1016/j.jpowsour.2008.01.060
  16. E. Spinace, M. Linardi, A. Neto, Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt-Sn electrocatalysts, Electrochem. Commun., Vol. 7, No. 4, 2005, p. 365. https://doi.org/10.1016/j.elecom.2005.02.006
  17. I. Kim, O. H. Han, S. A. Chae, Y. K Paik, S. H. Kwon, K. S. Lee, Y. E. Sung, H..S. Kim, Catalytic Reactions in Direct Ethanol Fuel Cells, Angewandte Chemie International Edition, Vol. 50, No. 10, 2011, p. 2270. https://doi.org/10.1002/anie.201005745
  18. C.C. Yang, S.J. Chiu, K.T. Lee, W.C. Chien, C.T. Lin, C.A. Huang, Study of poly(vinyl alcohol)/ titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell, J. Power Sources, Vol. 184, No. 1, 2008, p. 44. https://doi.org/10.1016/j.jpowsour.2008.06.011
  19. A. Brouzgou. A. Podias. P. Tsiakaras, PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review, J Appl Electrochem, Vol. 43, No. 2, 2013, p. 119. https://doi.org/10.1007/s10800-012-0513-2
  20. Y. Jiang, Y. Xu, Q. Yang, Y. Chen, S. Zhu, S. Shen, Power generation using polyaniline /multi-walled carbon nanotubes as an alternative cathode catalyst in microbial fuel cells, Int. J. Energy Research, Vol. 38, No. 11, 2014, p. 1416. https://doi.org/10.1002/er.3155