• Title/Summary/Keyword: Si heterojunction

Search Result 146, Processing Time 0.026 seconds

Electrical characteristics of Sn $O_{2}$Si heterojunction solar cells depending on annealing temperature (열처리온도에 따른 $SnO_2$/Si 이종접합 태양전지의 전기적 특성)

  • 이재형;박용관
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.481-489
    • /
    • 1994
  • The $SnO_2$/(n)Si solar cell was fabricated by electron beam evaporation method, and their properties were investigated. In proportion to increase of substrate and annealing temperature, the conductivity of $SnO_2$ thin film was increased, but its optical transmission decreases because of increasing optical absorption of free electrons in the thin film. $SnO_2$/Si Solar cell characteristics were improved by annealing, but the solar cells was deteriorated by heat treatment above 500[.deg. C]. The optimal outputs of $SnO_2$/Si solar cell through above investigations were $V_{\var}$:350[mV], $J_{sc}$ ;16.53[mA/c $m^{2}$], FF;0.41, .eta.=4.74[%]

  • PDF

Fabrication of the Hihg Power SiGe Heterojunction Bipolar Transistors using APCVD (상압 화학 기상 증착기를 이용한 고출력 SiGe HBT제작)

  • 한태현;이수민;조덕호;염병령
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.26-28
    • /
    • 1996
  • A high power SiGe HBT has been fabricated using APCVD(Atmospheric Pressure Chemical Vapor Deposition) and its perfermanoe has been analysed. The composition of Ge in the SiGe base was graded from 0% at the emitter-base junction to 20% at the base-collector junction. As a base electrode, titanium disilicide(TiSi$_2$) was used to reduce the extrinsic base resistance. The SiGe HBT with an emitter area of 2$\times$8${\mu}{\textrm}{m}$$^2$typically has a cutoff frequency(f$_{T}$) of 7.0GHz and a maximun oscillation frequency(f$_{max}$) of 16.1GHz with a pad de-embedding. The packaged high power SiGe HBT with an emitter area of 2xBx80${\mu}{\textrm}{m}$$^2$typically shows a cutoff frequency of 4.7GHz and a maximun oscillation frequency of 7.1GHz at Ic of 115mA.A.A.

  • PDF

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.

Relation Between Defect State and Negative Ultra-Violet Photoresponse from n-ZnO/p-Si Heterojunction Diode

  • Jo, Seong-Guk;Nam, Chang-U;Kim, Eun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.191.2-191.2
    • /
    • 2013
  • The negative photoconductivity was frequently observed in some semiconductors. It was known that the origin of the negative photoresponse from ZnO is molecular chemisorption or the charging effect of nanoparticles in bulk matrix. However, the origin of the negative photoresponse of thin film was not still clear. One of possible explanation is due to the deep level trap scheme, which describes the origin of the negative photoresponse via defect state under illumination of light. However, the defect states below Fermi level have high capture rate by Coulomb effect, so that these states are usually filled by electrons if the defect states have donor-like character. Therefore the condition which the defect states located in below Fermi level should be partially filled by electrons make more difficult to understand of mechanism of the negative photoresponse. In this study, n-ZnO/p-Si heterojunction diodes were fabricated by UHV RF magnetron sputter. Then, some diodes show the negative photoresponse under ultra-violet light illumination. The defect state of the ZnO was analyzed by photoluminescence and deep level transient spectroscopy. To interpret the negative photoconductivity, band diagram was simulated by using SCAPS program.

  • PDF

Characteristics of Vanadium Oxide Grown by Atomic Layer Deposition for Hole Carrier Selective Contacts Si Solar Cells (실리콘 전하선택접합 태양전지 적용을 위한 원자층 증착법으로 증착된 VOx 박막의 특성)

  • Park, Jihye;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.660-665
    • /
    • 2020
  • Silicon heterojunction solar cells can achieve high conversion efficiency with a simple structure. In this study, we investigate the passivation characteristics of VOx thin films as a hole-selective contact layer using ALD (atomic layer deposition). Passivation characteristics improve with iVoc (implied open-circuit voltage) of 662 mV and minority carrier lifetime of 73.9 µs after post-deposition annealing (PDA) at 100 ℃. The improved values are mainly attributed to a decrease in carbon during the VOx thin film process after PDA. However, once it is annealed at temperatures above 250 ℃ the properties are rapidly degraded. X-ray photoelectron spectroscopy is used to analyze the chemical states of the VOx thin film. As the annealing temperature increases, it shows more formation of SiOx at the interface increases. The ratio of V5+ to V4+, which is the oxidation states of vanadium oxide thin films, are 6:4 for both as-deposition and annealing at 100 ℃, and 5:5 for annealing at 300 ℃. The lower the carbon content of the ALD VOx film and the higher the V5+ ratio, the better the passivation characteristics.

Improvement Performance of Graphene-MoS2 Barristor treated by 3-aminopropyltriethoxysilane (APTES)

  • O, Ae-Ri;Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.291.1-291.1
    • /
    • 2016
  • Graphene by one of the two-dimensional (2D) materials has been focused on electronic applications due to its ultrahigh carrier mobility, outstanding thermal conductivity and superior optical properties. Although graphene has many remarkable properties, graphene devices have low on/off current ratio due to its zero bandgap. Despite considerable efforts to open its bandgap, it's hard to obtain appropriate improvements. To solve this problem, heterojunction barristor was proposed based on graphene. Mostly, this heterojunction barristor is made by transition metal dichalcogenides (TMDs), such as molybdenum disulfide ($MoS_2$) and tungsten diselenide ($WSe_2$), which have extremely thickness scalability of TMDs. The heterojunction barristor has the advantage of controlling graphene's Fermi level by applying gate bias, resulting in barrier height modulation between graphene interface and semiconductor. However, charged impurities between graphene and $SiO_2$ cause unexpected p-type doping of graphene. The graphene's Fermi level modulation is expected to be reduced due to this p-doping effect. Charged impurities make carrier mobility in graphene reduced and modulation of graphene's Fermi level limited. In this paper, we investigated theoretically and experimentally a relevance between graphene's Fermi level and p-type doping. Theoretically, when Fermi level is placed at the Dirac point, larger graphene's Fermi level modulation was calculated between -20 V and +20 V of $V_{GS}$. On the contrary, graphene's Fermi level modulation was 0.11 eV when Fermi level is far away from the Dirac point in the same range. Then, we produced two types heterojunction barristors which made by p-type doped graphene and graphene treated 2.4% APTES, respectively. On/off current ratio (32-fold) of graphene treated 2.4% APTES was improved in comparison with p-type doped graphene.

  • PDF

Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer (CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Dong-Shin;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.744-746
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$Cu_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

Electrical Properties of Organic Photovoltaic Cell using CuPc (CuPc를 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.612-614
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10nm to 50nm, we have obtained that the optimum CuPc layer thickness is around 40nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

Enhanced Photo Current in n-ZnO/p-Si Diode Via Embedded Ag Nanoparticles for the Solar Cell Application

  • Ko, Young-Uk;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Yang, Seung-Dong;Kim, Seong-Hyeon;Kim, Jin-Sup;An, Jin-Un;Eom, Ki-Yun;Lee, Hi-Deok;Lee, Ga-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • In this study, an n-ZnO/p-Si heterojunction diode with embedded Ag nanoparticles was fabricated to investigate the possible improvement of light trapping via the surface plasmon resonance effect for solar cell applications. The Ag nanoparticles were fabricated by the physical sputtering method. The acquired current-voltage curves and optical absorption spectra demonstrated that the application of Ag nanoparticles in the n-ZnO/p-Si interface increased the photo current, particularly in specific wavelength regions. The results indicate that the enhancement of the photo current was caused by the surface plasmon resonance effect generated by the Ag nanoparticles. In addition, minority carrier lifetime measurements showed that the recombination losses caused by the Ag nanoparticles were negligible. These results suggest that the embedding of Ag nanoparticles is a powerful method to improve the performance of n-ZnO/p-Si heterojunction solar cells.

이종접합 태양전지용 p a-Si:H 에미터 층 최적화 및 태양전지 특성 거동 연구

  • Kim, Kyung Min;Jeong, Dae Young;Song, Jun Yong;Park, Joo Hyung;Oh, Byung Sung;Song, Jinsoo;Lee, Jeong Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.129.2-129.2
    • /
    • 2011
  • 본 연구에서는 a-Si:H/c-si 구조의 이종접합 태양전지의 p a-Si:H 에미터 층의 박막 조건에 따라 태양전지 특성을 연구하였다. p, n-layer는 PECVD (Plasma-enhanced chemical vapor deposition) i-layer는 HWCVD(Hot wire chemical vapor deposition), ITO는 RF 마그네트론 스퍼터링법으로 제작하였다. p-layer의 도핑 농도, 기판 증착 온도, 증착 높낮이에 따라 특성을 비교 분석 하였다. QSSPC로 minority carrier life time, 자외 가시선 분광분석 장치로 투과 반사도를, Ellipsometer로 흡수 계수, 두께, FTIR로 막의 구성요소 등의 변화를 조사하여 개선된 p a-Si:H의 특성이 이종접합 태양전지에서 효율향상에 영향을 주는지 Photo IV와 EQE를 통하여 조사하였다.

  • PDF