• Title/Summary/Keyword: Si activation

Search Result 649, Processing Time 0.027 seconds

Corrosion Charateristics of PEO-treated Ti-6Al-4V Alloy in Solution Containing Si and Mg Ions

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.153-153
    • /
    • 2017
  • The application of the coating supports the mechanical characteristics of the implant, and various materials and coatings are currently being used in the implant in a way to accelerate adhesion. Especially, plasma electrolytic oxidation (PEO) coating has been proposed continually with good surface treatment of titanium alloys. Also, the PEO process can incorporate Ca and P ions on the titanium surface through variables varied factor. PEO process for bioactive surface has carried out in electrolytes containing Ca and P ions. Natural bone is composed of mineral elements such as Mg, Si, Zn, Sr, and Mn, etc. Especially, Mg and Si of these elements play role in bone formation and growth after clinical implantation of bio-implants. In this study, corrosion charateristics of PEO-treated Ti-6Al-4V alloy in solution containing Si and Mg ions has been investigated using several experimental techniques. The PEO-treated surfaces were identified by X-ray diffraction, using a diffractometer (XRD, Philips X' pert PRO, Netherlands) with Cu $K{\alpha}$ radiation. The morphology was observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 4800, Japan) and energy-dispersive X-ray spectroscopy (EDX, Oxford ISIS 310, England). The potentiodynamic polarization and AC impedance tests for electrochemical degradations were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Growth of Interfacial Reaction Layer by the Isothermal Heat Treatment of Cast-Bonded Fe-C-(Si)/Nb/Fe-C-(Si) (Nb/Fe-C-(Si) 주조접합재에서 등온열처리시 계면반응층의 성장에 관한 연구)

  • Jung, B.H.;Kim, M.G.;Jeong, S.H.;Park, H.I.;Ahn, Y.S.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.5
    • /
    • pp.260-266
    • /
    • 2003
  • In order to study the interfacial reaction between Nb thin sheet and Fe-C-(Si) alloy with different Chemical compositions, they were cast-bonded. The growth of carbide layer formed at the interface after isothermal heat treatment at 1173K, 1223K, 1273K and 1323K for various times was investigated. The carbide formed at the interface was NbC and the thickness of NbC layer was increased linearly in proportional to the heat treating time. Therefore, It was found that the growth of NbC layer was controlled by the interfacial reaction. The growth rate constant of NbC layer was slightly increased with increase of carbon content when the silicon content is similar in the cast irons. However, as silicon content increases with no great difference in carbon content, the growth of NbC layer was greatly retarded. The calculated activation energy for the growth of NbC layer was varied in the range of 447.4~549.3 kJ/moI with the compositions of cast irons.

Thermal oxidation and oxidation induced stacking faults of tilted angled (100) silicon substrate (저탈각 (100) Si 기판의 열산화 및 적층 결함)

  • 김준우;최두진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.185-193
    • /
    • 1996
  • $2.5^{\circ}\;and\;5^{\circ}$ tilted (100) Si wafer were oxidized in dry oxygen, and the differences in thermal oxidation behavior and oxidation induced stacking faults (OSF) between specimens were investigated. Ellipsometer measurements of the oxide thickness produced by oxidation in dry oxygen from 900 to $1200^{\circ}C$ showed that the oxidation rates of the tilted (100) Si were more rapid than those of the (100) Si and the differences between them decreased as the oxidation temperature increased. The activation energies based on the parabolic rate constant, B for (100) Si, $2.5^{\circ}$ off (100) Si and $5^{\circ}$ off (100) Si were 27.3, 25.9, 27.6 kcal/mol and those on the linear rate constant, B/A were 58.6, 56.6, 57.6 kcal/mol, respectively. Also, considerable decrease in the density of oxidation induced stacking faults for the $5^{\circ}$ off (100) Si was observed through optical microscopy after preferentially etching off the oxide layer, and the angle of stacking faults were changed with tilted angles.

  • PDF

Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD (플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과)

  • 김현철;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

  • PDF

The improvement of the stability of hydrogenated amorphous silicon (수소화된 비정질 실리콘박막의 안정성향상에 관한 연구)

  • 이재희
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.51-54
    • /
    • 1999
  • Hydrogenated amorphous silicon (a-Si:H) films are fabricated by Argon radical annealing (ArRA). The deposition rate of continuously deposited a-Si:H film is 1.9 $\AA$/s. As ArRA time are increased to 0.5 and 1 minute, the deposition rate are increased to 2.8 $\AA$/s and 3.3 $\\AA$/s. The deposition rate of a-si:H films with 2 and 3 minutes ArRA time are 3.3 $\AA$/s. As the ArRA time is increased, the optical band gap and the hydrogen contents in the a-Si:H films are increased and slightly decreased. The light-induced degradation of ArRA treated a-Si:H films are less than that of continuously deposited a-Si:H film. The dark conductivity and the conductivity activation energy ($E_a$) of continuously deposited a-Si:H film are decreased to 1/25 in room temperature and increased to 0.09eV By 1 hour light soaking, respectively. The dark conductivity and $E_a$ of ArRA treated a-Si:H film decreased to 1/3 in room temperature and increased to 0.03eV by 1 hour light soaking, respectively. We could improve the stability of a-Si:H films under the light soaking by ArRA technique and discussed the microscopic process of ArRA technique.

  • PDF

Synthesis of Lu2.94Ce0.06MgAl3SiO12 phosphor and its photoluminescent properties

  • Lee, Jung-Il;Kim, Tae Wan;Shin, Ji Young;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.121-126
    • /
    • 2015
  • A novel $Ce^{3+}$ doped $Lu_3MgAl_3SiO_{12}$ phosphor ($Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$) was successfully synthesized by a conventional solid-state reaction at $1450^{\circ}C$ for 5 h. The crystal structure of the synthesized phosphor powder was characterized by X-ray diffraction and Rietveld refinement. The prepared phosphor powder showed a broad peak at 550 nm, and the temperature dependence on photoluminescence properties of the prepared $Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$ phosphor was investigated from 300 to 525 K. The activation energy for thermal quenching was determined by Arrhenius fitting. The experimental results clearly indicate that prepared $Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$ phosphor has great potential for a down-conversion yellow phosphor in white light-emitting diodes.

The variation of C-V characteristics of thermal oxide grown on SiC wafer with the electrode formation condition (SiC 열산화막의 Electrode형성조건에 따른 C-V특성 변화)

  • Kang, M.J.;Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.354-357
    • /
    • 2002
  • Thermally grown gate oxide on 4H-SiC wafer was investigated. The oxide layers were grown at l150$^{\circ}C$ varying the carrier gas and post activation annealing conditions. Capacitance-Voltage(C-V) characteristic curves were obtained and compared using various gate electrode such as Al, Ni and poly-Si. The interface trap density can be reduced by using post oxidation annealing process in Ar atmosphere. All of the samples which were not performed a post oxidation annealing process show negative oxide effective charge. The negative oxide effective charges may come from oxygen radical. After the post oxidation annealing, the oxygen radicals fixed and the effective oxide charge become positive. The effective oxide charge is negative even in the annealed sample when we use poly silicon gate. Poly silicon layer was dope by POCl$_3$ process. The oxide layer may be affected by P ions in poly silicon layer due to the high temperature of the POCl$_3$ doping process.

  • PDF

A Study on Ion Shower Doping in Si Thin Film (이온 도핑 방법에 의한 실리콘 박막의 도핑 연구)

  • Yoo, Soon-Sung;Jun, Jung-Mok;Lee, Kyung-Ha;Moon, Byeong-Yeon;Jang, Jin
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.106-112
    • /
    • 1994
  • We have developed a large area ion shower doping system with an RF plasma ion source. The ion current density (i.e., doping concentration) increases with RF power and acceleration voltage. Using this technique, we investigated the optimum condition for ion doping of phosphorus in a-Si:H and poly-Si films. The optimum acceleration voltage and doping time are 6KV and 90sec, respectively, in a-Si:H films. Under this condition the electrical conductivity of ion-doped a-Si:H film is obtained ~10$^{-3}$/cm at room temperature. The sheet resistance decreases witnh acceleration voltage in ion-doped poly-Si, and a heavily-doped layer with a sheet resistance of 920$\Omega$/ㅁ is obtained by using ion doping and subsequent activation.

  • PDF

Competitive Photochlorination Reactions of Silane, di-Chloro and tri-Chlorosilanes at 337.1 nm

  • Jung, Kyung-Hoon;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.242-246
    • /
    • 1987
  • The hydrogen abstraction reactions of $SiH_4, SiH_2Cl_2 \;and\; SiHCl_3$ by ground state chlorine atoms generated photochemically from chlorine molecules have been studied at temperatures between 15 and $100^{\circ}C.$ The absolute rates for the reactions have been obtained by a competition technique using ethane as a competitor. The rate expressions ($in cm^3/mol/s$) are found to conform to an Arrhenius rate law: $k_{SiH_4} = (7.98 {\pm} 0.42) {\times} 10^{13}$ exp $[-(1250 {\pm}20)/T].$ $k_{SiH_2Cl_2} = (2.25 {\pm} 0.12) {\times} 10^{15}$ exp[-(1010 ${\pm}$ 10)/T]. $k_{SiHCl_3} = (9.04 {\pm} 0.28) {\times} 10^{14}\; exp[-(1200 {\pm} 10)/T].$ The activation energies obtained from this study represent the same trend as with the carbon analogues, while this trend was not found with respect to the bond dissociation energies among silicon compound homologues. These anomalous behaviors were interpreted in terms of electronic effects and of the structural differences between these compounds.

Structural and Magnetic Properties of Fe-Diluted Si Alloy Films by Pulsed-Laser Deposition (펄스레이저 증착법에 의한 Fe 희석된 Si 합금의 구조 및 자기 물성 연구)

  • Suh, Joo-Young;Lee, Kyung-Su;Pak, Sang-Woo;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.258-263
    • /
    • 2012
  • Fe-diluted Si alloys grown on p-type Si (100) substrates by pulsed-laser deposition method were studied for structural, electrical, and magnetic properties. The X-ray diffraction patterns for these alloy samples showed a few of peaks with cubic structures such as FeSi, $Fe_3Si$, and $Fe_4Si$. The Fe-composition in alloys are confirmed as Fe atomic percent about 1.25~6.49 % from energy dispersive spectroscopy measurement. The resistivity as a function of the reciprocal temperature was indicated an exponential increase with two activation energies of 5.21 and 7.79 meV. The maximum value of the magnetization at 10 K was about 100 emu/cc, and the ferromagnetism was also observed until 350 K from total magnetization as a function of temperature with applied magnetic field of 3,000 Oe.