• Title/Summary/Keyword: Si activation

Search Result 646, Processing Time 0.024 seconds

A Study on Carbon monoxide Gas Sensing Characteristics of Pt-SiC Schottky Diode Schottky Diode (Pt-SiC 쇼트키 다이오드를 이용한 CO Gas 감지 특성에 대한 연구)

  • Nho, I.H.;Lee, J.H.;Yang, S.J.;Jang, S.W.;Kim, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.90-92
    • /
    • 2001
  • Carbon monoxide-sensing behavior of Pt-SiC Schottky diodes. fabricated on the same SiC substrate have been systematically compared and analyzed as a function of carbon monoxide concentrati on and temperature by I-V and ${\Delta}I$-t methods under steady-state and transient condition. Adsorption activation energies of Carbon monoxide on the surface of Pt-SiC Schottky diodes is investigated in a high temperature range ($100{\sim}500^{\circ}C$). The optimal temperature for behavior sensing is $300^{\circ}C$ and saturation concentration is 200 ppm.

  • PDF

Low Pressure Chemical Vapor Deposition of Silicon Carbide (탄화규소의 저압 화학증착)

  • 송진수;김영욱;김동주;최두진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.257-264
    • /
    • 1994
  • The objectives of this study were to develop the low pressure chemical vapor deposition(LPCVD) process of SiC and to fabricate pure and dense SiC layer onto graphite substrate at low temperature. The deposition experiments were performed using the MTS-H2 system (30 torr) in the deposition temperature ranging from 100$0^{\circ}C$ to 120$0^{\circ}C$. The deposition rate of SiC was increased with the temperature. The rate controlling step can be classified from calculated results of the apparent thermal activation energy as follows; surface reaction below 110$0^{\circ}C$ and gas phase diffusion through a stagnant layer over 110$0^{\circ}C$. The deposited layer was $\beta$-SiC with a preferred orientation of (111) and the strongly faceted SiC deposits were observed over 115$0^{\circ}C$.

  • PDF

Rapid Heating of Ultrafine $Si_3N_4$ Powder Compacts under the Controlled Thermograms (가열이력 제어에 의한 $Si_3N_4$ 미분말 시편의 급속가열)

  • 이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.181-188
    • /
    • 1993
  • The sintering and renitridation behaviors of ultrafine Si3N4 powder compacts, which were heavily oxidized and/or free-Si rich, were investigated with particular attentiion to microstructures. The specimens were heated without restoring to additives and pressure by controlling heating process attained a Xe image apparatus. The effect of particle size, free-Si contents, decomposition and renitridation, were investigated. When fired to 1$650^{\circ}C$ within 15 sec and then immediately held at 135$0^{\circ}C$ for 10min N2 atmosphere, significant densification took place in the limited region, in addition to decreasing oxygen contents to less than 0.3wt%. On the other hand, specimens decomposed due to overheating at the initial stage were rapidly renitridated at the relatively lower temperature of the holding stage. And, then, the activation energy for the renitridation was calculated to be 49kcal/mole.

  • PDF

Relation between the Dipole Orientation and the Degree of Polymerization in Low Viscous Silicone Oils (저점도 실리콘유의 쌍극자 배향과 중합도의 관계)

  • Cho, Kyung-Soon;Kim, Kyung-Hwan;Kim, Wang-Kon;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.234-236
    • /
    • 1993
  • Dielectric properties of low viscous silicone oils have been investigated as a function of frequency and The increase of polymerization degree was attributed to presence of Si-O-Si bonds and their increased dissociation factor. The application of the Clausius-Mosotti equation on the low viscous silicone oils, it has been previously assumed that the oils were dilute solutions of polar molecules. In the silicone oil the Si-o and O-Si bonds give dipole polarization. Simple relations have been found which dipole moment and activation energy as a function of number of Si atoms in the low viscous silicone oils.

  • PDF

Local Oxidation Characteristics on Implanted 4H-SiC by Atomic Force Microscopy (원자힘 현미경을 이용한 이온 주입된 4H-SiC 상의 국소 산화 특성)

  • Lee, Jung-Ho;Ahn, Jung-Joon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.294-297
    • /
    • 2012
  • In this work, local oxidation behavior in phosphorous ion-implanted 4H-SiC has been investigated by using atomic force microscopy (AFM). The AFM-local oxidation (AFM-LO) has been performed on the implanted samples, with and without activation anneal, using an applied bias (~25 V). It has been clearly shown that the post-implantation annealing process at $1,650^{\circ}C$ has a great impact on the local oxidation rate by electrically activating the dopants and by modulating the surface roughness. In addition, the composition of resulting oxides changes depending on the doping level of SiC surfaces.

A study on the off-current mechanism of poly-Si thin film transistors fabricated at low temperature (저온 제작 다결정 실리콘 박막 트랜지스터의 off-current메카니즘에 관한 연구)

  • Chin, Gyo-Won;Kim, Jin;Lee, Jin-Min;Kim, Dong-Jin;Cho, Bong-Hee;Kim, Young-Ho
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1001-1007
    • /
    • 1996
  • The conduction mechanisms of the off-current in low temperature (.leq. >$600^{\circ}C$) processed polycrystalline silicon thin film transistors (LTP poly-Si TFT'S) have been systematically studied. Especially, the temperature and bias dependence of the off-current between hydrogenated and nonhydrogenated poly-Si TFT's were investigated and compared. The off-current of nonhydrogenated poly-Si TF's is because of a resistive current at low gate and drain voltage, thermally activated current at high gate and low drain voltage, and Poole-Frenkel emission current in the depletion region near the drain at high gate and drain voltage. After hydrogenation it has shown that the off -current mechanism is caused mainly by thermal activation and that the field-induced current component is suppressed.

  • PDF

A Study of Crystallization and Fracture Toughness of Glass Ceramics in the ZrO2·SiO2 Systems Prepared by the Sol-Gel Method (졸-겔법으로 제조한 ZrO2·SiO2계 결정화 유리의 결정화 및 파괴인성에 관한 연구)

  • Shin, Dae-Yong;Han, Sang-Mok;Kang, Wie-Soo
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.247-256
    • /
    • 2000
  • Precursor gels with the composition of $xZrO_2{\cdot}(100-x)SiO_2$ systems (x=10, 20 and 30 mol%) were prepared by the sol-gel method. Kinetic parameters, such as activation energy, Avrami's exponent, n, and dimensionality crystal growth value, m, have been simultaneously calculated from the DTA data using Kissinger and Matusita equations. The crystallite size dependence on tetragonal to monoclinic transformation of $ZrO_2$ was investigated using XRD, in relation to the fracture toughness. The crystallization of tetragonal $ZrO_2$ occurred through 3-dimensional diffusion controlled growth(n=m=2) and the activation energy for crystallization was calculated using Kissinger and Matusita equations, as about $310{\sim}325{\pm}10kJ/mol$. The growth of $t-ZrO_2$, in proportion to the cube of radius, increased with increasing heating temperature and heat-treatment time. It was suggested that the diffusion of Zr4+ions by Ostwald ripening was rate-limiting process for the growth of $t-ZrO_2$ crystallite size. The fracture toughness of $xZrO_2{\cdot}(100-x)SiO_2$ systems glass ceramics increased with increasing crystallite size of $t-ZrO_2$. The fracture toughness of $30ZrO_2{\cdot}70SiO_2$ system glass ceramics heated at $1,100^{\circ}C$ for 5 h was $4.84Mpam^{1/2}$ at a critical crystaliite size of 40 nm.

  • PDF

Synthesis of Monolithic Gel to Bulk glass-Ceramic in Multicomponent Li2O-Al2O3-SiO2 System (Sol-Gel법에 의한 Li2O-Al2O3-SiO2계 괴상겔 및 결정화유리의 합성)

  • 양중식;작화제부
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.541-551
    • /
    • 1988
  • The purpose of this investigation was to prepare multicomponent monolithic Li-Al-Si gels of composition(mol%) 16.67 Li2O-16.67 Al2O3-66.67 SiO2 and to convert the gels to monolithic glass-ceramic at low temperature without melting. The hydrolysis, DTA, TGA, TMA, SEM, pore distribution, density and the activation energy for crystallization of the glass-ceramic formation with rawmaterials of which tetraethl orhosilicate of networkforming cation(Si) is partially hydrolyzed, aluminum isoproxide and lithium methoxide prepared by Li-metal react with methanol were studied. The results were as follows : 1) Monolithic gels which were added with additional water, resulting in a total water content 2.5 to 3.0 times the stoichiometric amount required to fully hydrolyze the alkoxides. 2) Specimens were dried to form crylinders 60mm in length and 40mm in diameter in about 800 hrs at 5$0^{\circ}C$. 3) $\beta$-eucryptite crystals and $\beta$-spodumene crystals were detected in samples heated above 75$0^{\circ}C$. 4) Within the temperature and range of 25-50$0^{\circ}C$ and 1,00$0^{\circ}C$ the thermal expansion coefficient for crystallized samples were shown as 2.6-5.7$\times$10-7/$^{\circ}C$ and 7.4-12.5$\times$10-7/$^{\circ}C$, respectively. 5) The activation energy for the crystal growth was 11.01kcal/mol at 794$^{\circ}C$ to 85$0^{\circ}C$.

  • PDF

Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (I) Preparation of Porous Monolithic Gel in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Method (Sol-Gel법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 결정화 유리의 제조 : (I) Sol-Gel 방법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 겔체의 제조)

  • 조훈성;양중식;권창오;이현호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.535-542
    • /
    • 1993
  • It was investigated in this study that a preparation method, activation energy, surface area, pore volume, pore size distribution and DTA analysis of the dry gel in process of producing monolithic porous gel in Li2O-Al2O3-TiO2-SiO2 system by the sol-gel technique using metal alkoxides. Activation energy for gellation according to the variation of water concentration and the kind of catalysts ranged from 10 to 20kcal/mole. Monolithic dry gels were prepared after drying at 9$0^{\circ}C$ when the amount of water for gellation was 4~8 times more than the stoichiometric amount, that was necessary for the full hydrolysis of the mixed metal alkoxide. The specific surface area, the pore volume, the average pore radius of the dried gel at 18$0^{\circ}C$ according to the various kinds of catalyst were about 348~734$m^2$/g, 0.35~0.70ml/g and 10~35$\AA$, respectively. It showed that the dry gels were porous body. As a result ofthe analysis of DTA, it was confirmed that the exothermaic peaks at 715$^{\circ}C$ and 77$0^{\circ}C$ was clue to the crystallization of dried gel.

  • PDF

Bone-like Apatite Formation on Ti-6Al-4V in Solution Containing Mn, Mg, and Si Ions after Plasma Electrolytic Oxidation in the SBF Solution

  • Lim, Sang-Gyu;Choe, Han Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.157-157
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. They can directly connect to bone. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electrochemical oxidation is a novel method to form ceramic coatings on light metals such as titanium and its alloys. This is an excellent reproducibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magnesium (Mg) has a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth and development. Manganese influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Insufficience of Mn in human body is probably contributing cause of osteoporosis. Pre-studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The objective of this work was to study nucleation and growth of bone-like apatite formation on Ti-6Al-4V in solution containing Mn, Mg, and Si ions after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages. And bone-like apatite formation was carried out in SBF solution for 1, 3, 5, and 7 days. The morphologies of PEO-treated Ti-6Al-4V alloy in containing Mn, Mg, and Si ions were examined by FE-SEM, EDS, and XRD.

  • PDF