• 제목/요약/키워드: Si CMOS

검색결과 260건 처리시간 0.024초

CMOS 소자를 위한 NiSi의 Surface Damage 의존성 (The Dependency of Surface Damage to NiSi for CMOS Technology)

  • 지희환;안순의;배미숙;이헌진;오순영;이희덕;왕진석
    • 한국전기전자재료학회논문지
    • /
    • 제16권4호
    • /
    • pp.280-285
    • /
    • 2003
  • The influence of silicon surface damage on nickel-silicide (NiSi) has been characterized and H$_2$ anneal and TiN rapping has been applied to suppress the electrical, morphological deterioration phenomenon incurred by the surface damage. The substrate surface is intentionally damaged using Ar IBE (Ion beam etching) which can Precisely control the etch depth. The sheet resistance of NiSi increased about 18% by the surface damage, which is proven to be mainly due to the reduced silicide thickness. It is shown that simultaneous application of H: anneal and TiN capping layer is highly effective in suppressing the surface damage effect.

High-Speed Low-Power Junctionless Field-Effect Transistor with Ultra-Thin Poly-Si Channel for Sub-10-nm Technology Node

  • Kim, Youngmin;Lee, Junsoo;Cho, Yongbeom;Lee, Won Jae;Cho, Seongjae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.159-165
    • /
    • 2016
  • Recently, active efforts are being made for future Si CMOS technology by various researches on emerging devices and materials. Capability of low power consumption becomes increasingly important criterion for advanced logic devices in extending the Si CMOS. In this work, a junctionless field-effect transistor (JLFET) with ultra-thin poly-Si (UTP) channel is designed aiming the sub-10-nm technology for low-power (LP) applications. A comparative study by device simulations has been performed for the devices with crystalline and polycrystalline Si channels, respectively, in order to demonstrate that the difference in their performances becomes smaller and eventually disappears as the 10-nm regime is reached. The UTP JLFET would be one of the strongest candidates for advanced logic technology, with various virtues of high-speed operation, low power consumption, and low-thermal-budget process integration.

Gate Overlap에 따른 나노선 CMOS Inverter 특성 연구 (Characteristics of Nanowire CMOS Inverter with Gate Overlap)

  • 유제욱;김윤중;임두혁;김상식
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1494-1498
    • /
    • 2017
  • In this study, we investigate the influence of an overlap between the gate and source/drain regions of silicon nanowire (SiNW) CMOS (complementary metal-oxide-semiconductor) inverter on bendable plastic substrates and describe their electrical characteristics. The combination of n-channel silicon nanowire field-effect transistor (n-SiNWFET) and p-channel silicon nanowire field-effect transistor (p-SiNWFET) operates as an inverter logic gate. The gains with a drain voltage ($V_{dd}$) of 1 V are 3.07 and 1.21 for overlapped device and non-overlapped device, respectively. The superior electrical characteristics of each of the SiNW transistors including steep subthreshold slopes and the high $I_{on}/I_{off}$ ratios are major factors that enable the excellent operation of the logic gate.

다결정 Si/ $SiO_2$II Si 적층구조에서 $SiO_2$∥ 층의 두께에 따른 유전특성의 변화 (Dielectric Constant with $SiO_2$ thickness in Polycrystalline Si/ $SiO_2$II Si structure)

  • 송오성;이영민;이진우
    • 한국표면공학회지
    • /
    • 제33권4호
    • /
    • pp.217-221
    • /
    • 2000
  • The gate oxide thickness is becoming thinner and thinner in order to speed up the semiconductor CMOS devices. We have investigated very thin$ SiO_2$ gate oxide layers and found anomaly between the thickness determined with capacitance measurement and these obtained with cross-sectional high resolution transmission electron microscopy. The thicknesses difference of the two becomes important for the thickness of the oxide below 5nm. We propose that the variation of dielectric constant in thin oxide films cause the anomaly. We modeled the behavior as (equation omitted) and determined $\varepsilon_{bulk}$=3.9 and $\varepsilon_{int}$=-4.0. We predict that optimum $SiO_2$ gate oxide thickness may be $20\AA$ due to negative contribution of the interface dielectric constant. These new results have very important implication for designing the CMOS devices.s.

  • PDF

A 60-GHz LTCC SiP with Low-Power CMOS OOK Modulator and Demodulator

  • Byeon, Chul-Woo;Lee, Jae-Jin;Kim, Hong-Yi;Song, In-Sang;Cho, Seong-Jun;Eun, Ki-Chan;Lee, Chae-Jun;Park, Chul-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.229-237
    • /
    • 2011
  • In this paper, a 60 GHz LTCC SiP with low-power CMOS OOK modulator and demodulator is presented. The 60 GHz modulator is designed in a 90-nm CMOS process. The modulator uses a current reuse technique and only consumes 14.4-mW of DC power in the on-state. The measured data rate is up to 2 Gb/s. The 60 GHz OOK demodulator is designed in a 130nm CMOS process. The demodulator consists of a gain boosting detector and a baseband amplifier, and it recovers up to 5 Gb/s while consuming low DC power of 14.7 mW. The fabricated 60 GHz modulator and demodulator are fully integrated in an LTCC SiP with 1 by 2 patch antenna. With the LTCC SiP, 648 Mb/s wireless video transmission was successfully demonstrated at wireless distance of 20-cm.

웨이퍼 본딩을 이용한 탐침형 정보 저장장치용 압전 켄틸레버 어레이 (Thermo-piezoelectric $Si_3N_4$ cantilever array on a CMOS circuit for probe-based data storage using wafer-level transfer method)

  • 김영식;장성수;이선영;진원혁;조일주;남효진;부종욱
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.96-99
    • /
    • 2006
  • In this research, a wafer-level transfer method of cantilever away on a conventional CMOS circuit has been developed for high density probe-based data storage. The transferred cantilevers were silicon nitride ($Si_3N_4$) cantilevers integrated with poly silicon heaters and piezoelectric sensors, called thermo-piezoelectric $Si_3N_4$ cantilevers. In this process, we did not use a SOI wafer but a conventional p-type wafer for the fabrication of the thermo-piezoelectric $Si_3N_4$ cantilever arrays. Furthermore, we have developed a very simple transfer process, requiring only one step of cantilever transfer process for the integration of the CMOS wafer and cantilevers. Using this process, we have fabricated a single thermo-piezoelectric $Si_3N_4$ cantilever, and recorded 65nm data bits on a PMMA film and confirmed a charge signal at 5nm of cantilever deflection. And we have successfully applied this method to transfer 34 by 34 thermo-piezoelectric $Si_3N_4$ cantilever arrays on a CMOS wafer. We obtained reading signals from one of the cantilevers.

  • PDF

Ku-대역 BiCMOS 저잡음 증폭기 설계 (Design of Ku-Band BiCMOS Low Noise Amplifier)

  • 장동필;염인복
    • 한국전자파학회논문지
    • /
    • 제22권2호
    • /
    • pp.199-207
    • /
    • 2011
  • 0.25 um SiGe BiCMOS 공정을 이용하여 Ku-대역 저잡음 증폭기가 설계 및 제작되었다. 개발된 Ku-대역 저잡음 증폭기는 BiCMOS 공정의 HBT 소자를 이용하여 설계되었으며, 9~14 GHz 대역에서 2.05 dB 이하의 잡음 지수 특성과 19 dB 이상의 이득 특성을 가지고 있다. 제조 공정과 관련되어 제공된 PDK의 부정확성 및 부족한 인덕터 라이브러리를 보완하기 위하여 p-tap 값 최적화와 인덕터의 EM 시뮬레이션 기법 등을 활용하였다. 총 2회의 제작 공정을 수행하였으며, 최종 제작된 Ku-대역 저잡음 증폭기는 $0.65\;mm{\times}0.55\;mm$의 크기로 구현되었다. 특히 최종 제작된 저잡음 증폭기의 레이아웃에서 입/출력 RF Pad와 Bias Pad 등을 제외하고 약 $0.4\;mm{\times}0.4\;mm$ 정도의 크기를 갖도록 조정되어 다기능 RFIC의 증폭단으로 활용되었다.

쌍극 폴리-금속 게이트를 적용한 CMOS 트랜지스터의 특성 (Characteristics of CMOS Transistor using Dual Poly-metal(W/WNx/Poly-Si) Gate Electrode)

  • 장성근
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.233-237
    • /
    • 2002
  • A giga-bit DRAM(dynamic random access memory) technology with W/WNx/poly-Si dual gate electrode is presented in 7his papers. We fabricated $0.16\mu\textrm{m}$ CMOS using this technology and succeeded in suppressing short-channel effects. The saturation current of nMOS and surface-channel pMOS(SC-pMOS) with a $0.16\mu\textrm{m}$ gate was observed 330 $\mu\A/\mu\textrm{m}$ and 100 $\mu\A/\mu\textrm{m}$ respectively. The lower salutation current of SC-pMOS is due to the p-doped poly gate depletion. SC-pMOS shows good DIBL(dram-induced harrier lowering) and sub-threshold characteristics, and there was no boron penetration.

A Layout-Based CMOS RF Model for RFIC's

  • Park Kwang Min
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권3호
    • /
    • pp.5-9
    • /
    • 2003
  • In this paper, a layout-based CMOS RF model for RFIC's including the capacitance effect, the skin effect, and the proximity effect between metal lines on the Si surface is proposed for the first time for accurately predicting the RF behavior of CMOS devices. With these RF effects, the RF equivalent circuit model based on the layout of the multi-finger gate transistor is presented. The capacitances between metal lines on the Si surface are modeled with the layout. And the skin effect is modeled to the equivalent ladder circuit of metal line. The proximity effect is modeled by adding the mutual inductance between cross-coupled inductances in the ladder circuit representation. Compared to the BSIM 3v3 and other models, the proposed RF model shows better agreements with the measured data and shows well the frequency dependent behavior of devices in GHz ranges.

3-Gb/s 60-GHz Link With SiGe BiCMOS Receiver Front-End and CMOS Mixed-Mode QPSK Demodulator

  • Ko, Min-Su;Kim, Du-Ho;Rucker, Holger;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.256-261
    • /
    • 2011
  • We demonstrate 3-Gb/s wireless link using a 60-GHz receiver front-end fabricated in $0.25-{\mu}m$ SiGe:C bipolar complementary metal oxide semiconductor (BiCMOS) and a mixed-mode quadrature phase-shift keying (QPSK) demodulator fabricated in 60-nm CMOS. The 60-GHz receiver consists of a low-noise amplifier and a down-conversion mixer. It has the peak conversion gain of 16 dB at 62 GHz and the 3-dB intermediate-frequency bandwidth of 6 GHz. The demodulator using 1-bit sampling scheme can demodulate up to 4.8-Gb/s QPSK signals. We achieve successful transmission of 3-Gb/s data in 60 GHz through 2-m wireless link.