• Title/Summary/Keyword: Si CMOS

Search Result 260, Processing Time 0.021 seconds

Development of Si(110) CMOS process for monolithic integration with GaN power semiconductor (질화갈륨 전력반도체와 Si CMOS 소자의 단일기판 집적화를 위한 Si(110) CMOS 공정개발)

  • Kim, Hyung-tak
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.326-329
    • /
    • 2019
  • Gallium nitride(GaN) has been a superior candidate for the next generation power electronics. As GaN-on-Si substrate technology is mature, there has been new demand for monolithic integration of GaN technology with Si CMOS devices. In this work, (110)Si CMOS process was developed and the fabricated devices were evaluated in order to confirm the feasibility of utilizing domestic foundry facility for monolithic integration of Si CMOS and GaN power devices.

Reliability Analysis of 4H-SiC CMOS Device for High Voltage Power IC Integration (고전압 Power IC 집적을 위한 4H-SiC CMOS 신뢰성 연구)

  • Kang, Yeon-Ju;Na, Jae-Yeop;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In this paper, we studied 4H-SiC CMOS that can be integrated with high-voltage SiC power devices. After designing the CMOS on a 4H-SiC substrate, we compared the electrical characteristics with the reliability of high temperature operation by TCAD simulation. In particular, it was confirmed that changing HfO2 as the gate dielectric for reliable operation at high temperatures improves the thermal properties compared to SiO2. By researching SiC CMOS devices, we can integrate high-power SiC power devices with SiC CMOS for excellent performance in terms of efficiency and cost of high-power systems.

Electrical characteristics of 3-D stacked CMOS Inverters using laser crystallization method (레이저 결정화 방법을 적용한 3차원 적층 CMOS 인버터의 전기적 특성 개선)

  • Lee, Woo-Hyun;Cho, Won-Ju;Oh, Soon-Young;Ahn, Chang-Geun;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.118-119
    • /
    • 2007
  • High performance three-dimensional (3-D) stacked poly-Si complementary metal-oxide semiconductor (CMOS) inverters with a high quality laser crystallized channel were fabricated. Low temperature crystallization methods of a-Si film using the excimer-laser annealing (ELA) and sequential lateral solidification (SLS) were performed. The NMOS thin-film-transistor (TFT) at lower layer of CMOS was fabricated on oxidized bulk Si substrate, and the PMOS TFT at upper layer of CMOS was fabricated on interlayer dielectric film. The 3-D stacked poly-Si CMOS inverter showed excellent electrical characteristics and was enough for the vertical integrated CMOS applications.

  • PDF

A 45GHz $f_{T}\;and\;50GHz\;f_{max}$ SiGe BiCMOS Technology Development for Wireless Communication ICs (무선통신소자제작을 위한 45GHz $f_{T}$ 및 50GHZz $f_{max}$ SiGe BiCMOS 개발)

  • Hwang Seok-Hee;Cho Dae-Hyung;Park Kang-Wook;Yi Sang-Don;Kim Nam-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.1-8
    • /
    • 2005
  • A $0.35\mu$m SiGe BiCMOS fabrication process has been timely developed, which is aiming at wireless RF ICs development and fast growing SiGe RF market. With non-selective SiGe epilayer, SiGe HBTs in this process used trapezoidal Ge base profile for the enhanced AC performance via Ge induced bandgap niuoin. The characteristics of hFE 100, $f_{T}\;45GHz,\;F_{max}\;50GHz,\;NF_{min}\;0.8dB$ have been obtained by optimizing not only SiGe base profile but also RTA condition after emitter polysilicon deposition, which enables the SiGe technology competition against the worldwide cutting edge SiGe BiCMOS technology. In addition, the process incorporates the CMOS logic, which is fully compatible with $0.35\mu$m pure logic technology. High Q passive elements are also provided for high precision analog circuit designs, and their quality factors of W(1pF) and inductor(2nH) are 80, 12.5, respectively.

Degradation of the SiGe hetero-junction bipolar transistor in SiGe BiCMOS process (실리콘-게르마늄 바이시모스 공정에서의 실리콘-게르마늄 이종접합 바이폴라 트랜지스터 열화 현상)

  • Kim Sang-Hoon;Lee Seung-Yun;Park Chan-Woo;Kang Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • The degradation of the SiGe hetero-junction bipolar transistor(HBT) properties in SiGe BiCMOS process was investigated in this paper. The SiGe HBT prepaired by SiGe BiCMOS process, unlike the conventional one, showed the degraded DC characteristics such as the decreased Early voltage, the decreased collector-emitter breakdown voltage, and the highly increased base leakage current. Also, the cutoff frequency(f/sub T/) and the maximum oscillation frequency(f/sub max/) representing the AC characteristics are reduced to below 50%. These deteriorations are originated from the change of the locations of emitter-base and collector-base junctions, which is induced by the variation of the doping profile of boron in the SiGe base due to the high-temperature source-drain annealing. In the result, the junctions pushed out of SiGe region caused the parastic barrier formation and the current gain decrease on the SiGe HBT device.

Si PIN Radiation Sensor with CMOS Readout Circuit

  • Kwon, Yu-Mi;Kang, Hee-Sung;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Silicon PIN diode radiation sensors and CMOS readout circuits were designed and fabricated in this study. The PIN diodes were fabricated using a 380-${\mu}m$-thick 4-inch n+ Si (111) wafer containing a $2-k{\Omega}{\cdot}cm$ n- thin epitaxial layer. CMOS readout circuits employed the driving and signal processes in a radiation sensor were mixed with digital logic and analog input circuits. The primary functions of readout circuits are amplification of sensor signals and the generation of the alarm signals when radiation events occur. The radiation sensors and CMOS readout circuits were fabricated in the Institute of Semiconductor Fusion Technology (ISFT) semiconductor fabrication facilities located in Kyungpook National University. The performance of the readout circuit combined with the Si PIN diode sensor was demonstrated.

Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications

  • Mheen, Bong-Ki;Song, Young-Joo;Kang, Jin-Young;Hong, Song-Cheol
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.439-445
    • /
    • 2005
  • We introduce a strained-SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si-cap layers in n-channel and p-channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high-electron-mobility Si surface channel in nMOSFETs and a compressively strained high-hole-mobility $Si_{0.8}Ge_{0.2}$ buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate-leakage levels. Unlike the conventional strained-Si CMOS employing a relatively thick (typically > 2 ${\mu}m$) $Si_xGe_{1-x}$ relaxed buffer layer, the strained-SiGe CMOS with a very thin (20 nm) $Si_{0.8}Ge_{0.2}$ layer in this study showed a negligible self-heating problem. Consequently, the proposed strained-SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.

  • PDF

Novel Devices for Sub-100 nm CMOS Technology

  • Lee, Jong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.180-183
    • /
    • 2000
  • Beginning with a brief introduction on near 100 nm or below CMOS devices, this paper addresses novel devices for future sub-100 nm CMOS. First, key issues such as gate materials, gate dielectric, source/drain, and channel in Si bulk CMOS devices are considered. CMOS devices with different channel doping and structure are introduced by explaining a figure of merit. Finally, novel device structures such as SOI, SiGe, and double-gate devices will be discussed for possible candidates for sub-100 nm CMOS.

  • PDF

Characteristics of Polycrystalline Silicon TFT Unitary CMOS Circuits Fabricated with Various Technology (다양한 공정 방법으로 제작된 다결정 실리콘 박막 트랜지스터 단위 CMOS 회로의 특성)

  • Yu, Jun-Seok;Park, Cheol-Min;Jeon, Jae-Hong;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.339-343
    • /
    • 1999
  • This paper reports the characteristics of poly-Si TFT unitary CMOS circuits fabricated with various techniques, in order to investigate the optimum process conditions. The active films were deposited by PECVD and LPCVD using $SiH_4\; and\; Si_2H_6$ as source gas, and annealed by SPC and ELA methods. The impurity doping of the oource and drain electrodes was performed by ion implantation and ion shower. In order to investigate the AC characteristics of the poly-Si TFTs processed with various methods, we have examined the current driving characteristics of the polt-Si TFT and the frequency characteristics of 23-stage CMOS ring oscillators. Ithas been observed that the circuits fabricated using $Si_2H_6$ with low-temperature process of ELA exhibit high switching speed and current driving performances, thus suitable for real application of large area electronics.

  • PDF

Design of High Performance Full-Swing BiCMOS Logic Circuit (고성능 풀 스윙 BiCMOS 논리회로의 설계)

  • Park, Jong-Ryul;Han, Seok-Bung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.1-10
    • /
    • 1993
  • This paper proposes a High Performance Full-Swing BiCMOS (HiF-BiCMOS) circuit which improves on the conventional BiCMOS circuit. The HiF-BiCMOS circuit has all the merits of the conventional BiCMOS circuit and can realize full-swing logic operation. Especially, the speed of full-swing logic operation is much faster than that of conventional full-swing BiCMOS circuit. And the number of transistors added in the HiF-BiCMOS for full-swing logic operation is constant regardless of the number of logic gate inputs. The HiF-BiCMOS circui has high stability to variation of environment factors such as temperature. Also, it has a preamorphized Si layer was changed into the perfect crystal Si after the RTA. Remarkable scalability for power supply voltage according to the development of VLSI technology. The power dissipation of HiF-BiCMOS is very small and hardly increases about a large fanout. Though the Spice simulation, the validity of the proposed circuit design is proved.

  • PDF