• Title/Summary/Keyword: Si/O-doped

Search Result 484, Processing Time 0.031 seconds

Characteristics of Photo-conversion Glass with $Eu^{3+}$ and Its Use 1 (Glass Production and Photo-conversion Characteristics) ($Eu^{3+}$가 첨가된 광변환 유리의 특성과 효과연구 1(유리의 제조와 특성))

  • Chung, Hun-S.;Ahn, Yang-K.;Kil, Dae-S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.44-50
    • /
    • 2002
  • Photosynthesis of plants is effective in the range of 550 to 700 nm of the wavelength of solar irradiation. If the conversion of ultraviolet to the above mentioned region is possible, the photosynthesizing ability is expected to be enhanced. $Eu^{3+}$ doped soda-lime bulk and $TiO_2-SiO_2$ sol-gel coated glasses were prepared and their spectroscopic properties were studied. The absorption and emission spectra for the specimens were measured with the changes of wavelength and Eu ion concentration in the range of the wavelength of 300 to 700nm. The transmittance intensity of visible light through the bulk glass and the coated one was unchanged with the addition of Eu element. The emission spectrum intensity of $Eu^{3+}$ was found to be the maximum at 618 nm which is a transition of $^5DO{\rightarrow}^7F_2$. Additionally, it was shown that the intensity was linearly increased up to 10% of the Eu concentration.

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors (고전압 β-산화갈륨(β-Ga2O3) 전력 MOSFETs)

  • Mun, Jae-Kyoung;Cho, Kyujun;Chang, Woojin;Lee, Hyungseok;Bae, Sungbum;Kim, Jeongjin;Sung, Hokun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.

Optimized ultra-thin tunnel oxide layer characteristics by PECVD using N2O plasma growth for high efficiency n-type Si solar cell

  • Jeon, Minhan;Kang, Jiyoon;Oh, Donghyun;Shim, Gyeongbae;Kim, Shangho;Balaji, Nagarajan;Park, Cheolmin;Song, Jinsoo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.308-309
    • /
    • 2016
  • Reducing surface recombination is a critical factor for high efficiency silicon solar cells. The passivation process is for reducing dangling bonds which are carrier. Tunnel oxide layer is one of main issues to achieve a good passivation between silicon wafer and emitter layer. Many research use wet-chemical oxidation or thermally grown which the highest conversion efficiencies have been reported so far. In this study, we deposit ultra-thin tunnel oxide layer by PECVD (Plasma Enhanced Chemical Vapor Deposition) using $N_2O$ plasma. Both side deposit tunnel oxide layer in different RF-power and phosphorus doped a-Si:H layer. After deposit, samples are annealed at $850^{\circ}C$ for 1 hour in $N_2$ gas atmosphere. After annealing, samples are measured lifetime and implied Voc (iVoc) by QSSPC (Quasi-Steady-State Photo Conductance). After measure, samples are annealed at $400^{\circ}C$ for 30 minute in $Ar/H_2$ gas atmosphere and then measure again lifetime and implied VOC. The lifetime is increase after all process also implied VOC. The highest results are lifetime $762{\mu}s$, implied Voc 733 mV at RF-power 200 W. The results of C-V measurement shows that Dit is increase when RF-power increase. Using this optimized tunnel oxide layer is attributed to increase iVoc. As a consequence, the cell efficiency is increased such as tunnel mechanism based solar cell application.

  • PDF

Effect of Annealing Temperature on the Electrical Performance of SiZnSnO Thin Film Transistors Fabricated by Radio Frequency Magnetron Sputtering

  • Kim, Byoungkeun;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.55-57
    • /
    • 2017
  • Amorphous oxide thin film transistors (TFTs) were fabricated with 0.5 wt% silicon doped zinc tin oxide (a-0.5SZTO) thin film deposited by radio frequency (RF) magnetron sputtering. In order to investigate the effect of annealing treatment on the electrical properties of TFTs, a-0.5SZTO thin films were annealed at three different temperatures ($300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$ for 2 hours in a air atmosphere. The structural and electrical properties of a-0.5SZTO TFTs were measured using X-ray diffraction and a semiconductor analyzer. As annealing temperature increased from $300^{\circ}C$ to $500^{\circ}C$, no peak was observed. This provided crystalline properties indicating that the amorphous phase was observed up to $500^{\circ}C$. The electrical properties of a-0.5SZTO TFTs, such as the field effect mobility (${\mu}_{FE}$) of $24.31cm^2/Vs$, on current ($I_{ON}$) of $2.38{\times}10^{-4}A$, and subthreshold swing (S.S) of 0.59 V/decade improved with the thermal annealing treatment. This improvement was mainly due to the increased carrier concentration and decreased structural defects by rearranged atoms. However, when a-0.5SZTO TFTs were annealed at $700^{\circ}C$, a crystalline peak was observed. As a result, electrical properties degraded. ${\mu}_{FE}$ was $0.06cm^2/Vs$, $I_{ON}$ was $5.27{\times}10^{-7}A$, and S.S was 2.09 V/decade. This degradation of electrical properties was mainly due to increased interfacial and bulk trap densities of forming grain boundaries caused by the annealing treatment.

Characterization of Zn diffusion in TnP Cy $Zn_3P_2$ thin film and rapid thermal annealing (RHP에서의 $Zn_3P_2$ 박막 및 RTA법에 의한 Zn 확산의 특성)

  • 우용득
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • Zn diffusions in InP have been studied by electrochemical capacitance voltage. The InP layer was grown by metal organic chemical vapor deposition, and $Zn_3P_2$ thin film was deposited on the epitaxial substrates. The samples annealed in a rapid thermal annealing. It is demonstrated that surface hole concentration as high as $1\times10^{19}\textrm{cm}^{-3}$ can be achieved. When the Zn diffusion was carried at $550^{\circ}C$ and 5-20 min., the diffusion depth of hole concentration moves from 1.51$\mu\textrm{m}$ to 3.23 $\mu\textrm{m}$, and the diffusion coeffcient of Zn is $5.4\times10^{-11}\textrm{cm}^2$/sec. After activation, the concentration is two orders higher than that of untreated sample at 0.30 $\mu\textrm{m}$ depth. As the annealing time is increase, the hole concentration remains almost constant, except deep depth. It means that excess Zn interstitials exist in the doped region is rapidly diffusion into the undoped region and convert into substitutional When the thickness of $SiO_2$ thin film is above 1,000$\AA$, the hole concentration becomes stable distribution.

Effect of Mullite Generation on the Strength Improvement of Porcelain (Mullite 생성이 도자기 강도개선에 미치는 영향)

  • Choi, Hyo-Sung;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.168-172
    • /
    • 2011
  • Alumina powder was added in a general porcelain (Backja) with clay, feldspar and quartz contents to promote the mullite ($3Al_2O_3{\cdot}2SiO_2$) generation in the porcelain. Low melting materials ($B_2O_3(450^{\circ}C)$, $MnO_3(940^{\circ}C)$, CuO($1080^{\circ}C$)) were doped at ~3 wt% to modify the sinterability of porcelain with a high alumina contents and promote the mullite generation. Green body was made by slip casting method with blended slurry and then, they were fired at $1280^{\circ}C$ for 1hr by a $2^{\circ}C/min$. Densifications of samples with high alumina contents (20~30 wt%) were impeded. As the doping contents of low melting materilas increased, the sinterability of samples was improved. The shrinkage rate and bulk density of samples were improved by doping with low melting materials. Mullite phase increased with increasing the low melting contents in the phase analyses. This means lots of alumina and quartz were transformed into mullite phase by low melting contents doping. In the results, high bending strength of samples with high alumina contents was accomplished by improving the densification and mullite generation in the porcelain.

The Effect of the Deposition Temperature and la Doping Concentration on the Properties of the (Pb, La)$\textrm{TiO}_3$ Films Deposited by ECR PECVD (증착온도와 La조성비가 ECR 플라즈마 화학기상증착법으로 증착한 (Pb, La)$\textrm{TiO}_3$박막의 물성에 미치는 영향)

  • Jeong, Seong-Ung;Park, Hye-Ryeon;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.196-202
    • /
    • 1997
  • Perovskite lanthanum doped lead titanate ($(Pb,La)TiO_{3}$ or PLT) thin films were successfully fabricated on Pt/TijSiO.iSi substrates at the temperatures as low as $440~500^{\circ}C$ by eleclron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR PECVII). Since the volatilities of the MC sources arid oxide molecules (especially Ph oxide) increased with increasing deposition temperature, the film deposition rate and the (I'b + La)/'Ti ratio decreased Stoichiometric perovskite PL'T films with good dielectric and leakeage current properties were obtained at the temperatures of $460~480^{\circ}C$. The lanthanum content of the film was nearly directly propotional to $La(DPM)_{3}$ flow rate. As the La/Ti ratio increased from 3.0 to 9.5%, the dielectric constant increased from 360 to 650 and the leakeage current density at 100kV/cm electric field decreased from $4{\times}10^{-5}$ to $4{\times}10_{-8}A/cm^2$.

  • PDF

Mechanical Property and Crystallization of Glass by Femtosecond Laser Pulses (Femto Second Laser Pulse에 의한 유리의 결정화 및 기계적 특성)

  • Cha, Jae-Min;Moon, Pil-Yong;Kim, Dong-Hyun;Park, Sung-Je;Cho, Sung-Rak;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.377-383
    • /
    • 2005
  • Generally, the strength achieved of glass-ceramics is higher as is the fracture toughness, as compared with the original glass. This improvement is due to the microstructure consisting of very small crystals. In this study, Ag-doped $45SiO_2-24CaO-24Na_2O-4P_2O_5$ glasses were irradiated to strengthen by the crystallization using Femto second laser Pulses. Through the UV/VIS spectroscope, XRD, Nano-indenter and SEM etc., heat-treated and irradiation of laser pulses without heat-treated samples were analyzed. Two kinds of samples, heat-treated and laser irradiated without heat-treated samples, showed the peaks in the same wavelength near 360 nm. Especially, samples irradiated by 140 mW laser with XYZ stage having at the rate of 100$\~$l000 $\mu$m/s had the largest absorption peak among them, and heat-treated samples was shown lower absorption range than over 90 mW laser irradiated samples. Moreover, samples irradiated by laser had higher values ($4.4\~4.56{\times}10^{-3}(Pa)$) of elastic modulus which related with strength of glass than values of heat-treated samples and these are 1.2$\~$1 .5 times higher values than them of mother glass.

A Comparative Study of Two Different SnO2:F-coated Glass Substrates for CdTe Solar Cells

  • Cha, Eun Seok;Ko, Young Min;Choi, Yong Woo;Park, Gyu Chan;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Two different fluorine-doped tin oxide (FTO)-coated glass substrates were investigated to find better suitability for CdTe solar cells. Substrate A consisted of FTO (300 nm)/$SiO_2$ (24 nm)/intrinsic $SnO_2$ (30 nm)/borosilicate glass (2.2 mm), and substrate B consisted of FTO (700 nm)/intrinsic $SnO_2$ (30nm)/borosilicate glass (1.8 mm). The overall thickness of the FTO/glass substrates was about 2.5 mm. The total light transmittance of substrate B was much higher than that of substrate A throughout the whole spectral region, even though the thickness of the FTO in substrate B was twice larger than that of the FTO in the substrate A. The short-circuit current greatly increased in substrate B and the external quantum efficiency (EQE) increased over the whole wavelength range. This study shows that the diffuse optical transmittance played a key role in the large EQE value in the blue wavelength region, and the direct transmittance played a key role in the large EQE value in the red wavelength region. The higher transmittance is due to the rough surface generated by the thicker FTO on glass. The conversion efficiency of the CdTe solar cell increased from 12.4 to 15.1% in combination of rough FTO substrate and Cu solution back contact.

Temperature dependence of optical energy gaps and thermodynamic function of $Zn_{4}SnSe_{6}$ and $Zn_{4}SnSe_{6}:Co^{2+}$ single crystals ($Zn_{4}SnSe_{6}$$Zn_{4}SnSe_{6}:Co^{2+}$ 단결정에서 광학적 에너지 띠 및 열역학적 함수의 온도의존성 연구)

  • Kim, D.T.;Kim, N.O.;Choi, Y.I.;Kim, B.C.;Kim, H.G.;Hyun, S.C.;Kim, B.I.;Song, C.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.25-30
    • /
    • 2002
  • The ternary semiconducting compounds of the $A_{4}BX_{6}$(A=Cd, Zn, Hg; B=Si, Sn, Ge; X=S, Se, Te) type exhibit strong fluorescence and high photosensitivity in the visible and near infrared ranges, so these are supposed to be materials applicable to photoelectrical devices. These materials were synthesized and single crystals were first grown by Nitsche, who identified the crystal structure of the single crystals. In this paper. author describe the undoped and $Co^{2+}$-doped $Zn_{4}SnSe_{6}$ single crystals were grown by the chemical transport reaction(CTR) method using iodine of $6mg/cm^{3}$ as a transport agent. For the crystal. growth, the temperature gradient of the CTR furnace was kep at $700^{\circ}C$ for the source aone and at $820^{\circ}C$ for the growth zone for 7-days. It was found from the analysis of x-ray diffraction that undoped and $Co^{2+}$-doped $Zn_{4}SnSe_{6}$ compounds have a monoclinic structure. The optical absorption spectra obtained near the fundamental absorption edge showed that these compounds have a direct energy gaps. These temperature dependence of the optical energy gap were closely investigated over the temperature range 10[K]~300[K]

  • PDF