DOI QR코드

DOI QR Code

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors

고전압 β-산화갈륨(β-Ga2O3) 전력 MOSFETs

  • Mun, Jae-Kyoung (RF/Power Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Cho, Kyujun (RF/Power Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Chang, Woojin (RF/Power Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Lee, Hyungseok (RF/Power Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Bae, Sungbum (RF/Power Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Kim, Jeongjin (RF/Power Components Research Group, Electronics and Telecommunications Research Institute) ;
  • Sung, Hokun (Customer Engineering Lab, Korea Advanced Nano Fab Center)
  • 문재경 (한국전자통신연구원 RF/전력부품연구그룹) ;
  • 조규준 (한국전자통신연구원 RF/전력부품연구그룹) ;
  • 장우진 (한국전자통신연구원 RF/전력부품연구그룹) ;
  • 이형석 (한국전자통신연구원 RF/전력부품연구그룹) ;
  • 배성범 (한국전자통신연구원 RF/전력부품연구그룹) ;
  • 김정진 (한국전자통신연구원 RF/전력부품연구그룹) ;
  • 성호근 (한국나노기술원 CE지원실)
  • Received : 2019.03.13
  • Accepted : 2019.04.05
  • Published : 2019.05.01

Abstract

This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.

Keywords

JJJRCC_2019_v32n3_201_f0001.png 이미지

Fig. 1. Cross-sectional β-Ga2O3 MOSFET structure with MBE-grown epitaxial layers.

JJJRCC_2019_v32n3_201_f0002.png 이미지

Fig. 3. Analysis data for MESA etching process; (a) surface roughness by AFM, (b) etching angle by cross-sectional FIB SEM photograph.

JJJRCC_2019_v32n3_201_f0003.png 이미지

Fig. 4. DC IDS-VDS characteristics of β-Ga2O3 MOSFET with MBE-grown Si-doped channel.

JJJRCC_2019_v32n3_201_f0004.png 이미지

Fig. 5. DC specific Rds,oncharacteristics of β-Ga2O3 MOSFET.

JJJRCC_2019_v32n3_201_f0005.png 이미지

Fig. 6. DC transfer characteristics of β-Ga2O3 MOSFET with Si-doped MBE-grown channel layer.

JJJRCC_2019_v32n3_201_f0006.png 이미지

Fig. 7. DC breakdown voltage characteristics of β-Ga2O3 MOSFET measured at room temperature.

JJJRCC_2019_v32n3_201_f0007.png 이미지

Fig. 2. (a) Plan-view optical micrograph and (b) magnified device active area of β-Ga2O3 MOSFET.

Table 1. Material properties for major semiconductors.

JJJRCC_2019_v32n3_201_t0001.png 이미지

References

  1. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]
  2. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Jpn. J. Appl. Phys., 55, 1202A2 (2016). [DOI: https://doi.org/10.7567/jjap.55.1202A2]
  3. M. Higashiwaki, A. Kuramata, H. Murakami, and Y. Kumagai, J. Phys. D: Appl. Phys., 50, 333002 (2017). [DOI: https://doi.org/10.1088/1361-6463/aa7aff]
  4. G. Jessen, K. Chabak, A. Green, N. Moser, J. McCandless, K. Leedy, A. Crespo, and S. Tetlak, Proc. 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) (IEEE, Miami, USA, 2017) p. 1.
  5. T. Oshima, T. Okuno, and S. Fujita, Jpn. J. Appl. Phys., 46, 7217 (2007). [DOI: https://doi.org/10.1143/jjap.46.7217]
  6. B. Bayraktaroglu, Assessment of $Ga_{2}O_{3}$ Technology [DOI: https://www.dtic.mil/dtic/tr/fulltext/u2/1038137.pdf]
  7. A. Y. Polyakov, N. B. Smirnov, I. V. Schemerov, A. V. Chernykh, E. B. Yakimov, A. I. Kochkova, A. N. Tereshchenko, and S. J. Pearton, ECS J. Solid State Sci. Technol., 8, Q3091 (2018). [DOI: https://doi.org/10.1149/2.0171907jss]
  8. A. Y. Polyakov, N. B. Smirnov, I. V. Schemerov, S. J. Pearton, F. Ren, A. V. Chernykh, and A. I. Kochkova, Appl. Phys. Lett., 113, 142102 (2018). [DOI: https://doi.org/10.1063/1.5051986]
  9. S. Karmalkar and U. K. Mishra, IEEE Trans. Electron Devices, 48, 1515 (2001). [DOI: https://doi.org/10.1109/16.936500]
  10. K. Zeng, A. Vaidya, and U. Singisetti, IEEE Electron Device Lett., 39, 1385 (2018). [DOI: https://doi.org/10.1109/LED.2018.2859049]
  11. H. Liang, Y. Chen, X. Xia, C. Zhang, R. Shen, Y. Liu, Y. Luo, and G. Du, Mater. Sci. Semicond. Process., 39, 582 (2015). [DOI: https://doi.org/10.1016/j.mssp.2015.05.065]
  12. A. P. Shah and A. Bhattacharya, J. Vac. Sci. Technol., A, 35, 041301 (2017). [DOI: https://doi.org/10.1116/1.4983078]
  13. L. Zhang, A. Verma, H. (G.) Xing, and D. Jena, Jpn. J. Appl. Phys., 56, 030304 (2017). [DOI: https://doi.org/10.7567/jjap.56.030304]
  14. J. Yang, S. Ahn, F. Ren, S. Pearton, R. Khanna, K. Bevlin, D. Geerpuram, and A. Kuramata, J. Vac. Sci. Technol., B, 35, 031205 (2017). [DOI: https://doi.org/10.1116/1.4982714]
  15. J. K. Mun, K. J. Choi, J. W. Do, H. S. Lee, S. B. Bae, and W. J. Chang, Proc. Journal of the Korean Institute of Electrical and Electronic Material Engineers Annual Summer Conference 2018 (CDM THE BIG, Goseong-Gun, Korea, 2018) p. 35.
  16. H. Yu, M. Schaekers, T. Schram, N. Collaert, K. D. Meyer, N. Horiguchi, A. Thean, and K. Barla, IEEE Electron Device Lett., 35, 957 (2014). [DOI; https://doi.org/10.1109/LED.2014.2340821]
  17. J. T. Asubar, J. Ng, H. Tokuda, and M. Kuzuhara, Compd. Semicond. Mag., 22, 26 (2016). [DOI: https://data.angel.digital/pdf/CSOct16.compressed.pdf]
  18. J. H. Ji and J. H. Koh, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 3 (2017). [DOI: http://kiss.kstudy.com/thesis/thesis-view.asp?key=3517150]