• Title/Summary/Keyword: Si(111) substrate

Search Result 223, Processing Time 0.023 seconds

The characteristics of AlN buffered GaN on ion implanted Si(111) (이온주입된 Si(111)에 AlN 완충층을 이용하여 성장시킨 GaN 박막의 특성)

  • 강민구;진정근;이재석;노대호;양재웅;변동진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.165-165
    • /
    • 2003
  • The growth of GaN on Si is of great interest due to the several advantages low cost, large size and high-quality wafer availability as well as its matured technology. The crystal quality of GaN is known to be much influenced by the surface pretreatment of Si substrate [1]. In this work, the properties of GaN overlayer grown on ion implanted Si(111)and bare Si(111) have been investigated. Si(111) surface was treated ion implantation with 60KeV and dose 1${\times}$10$\^$16//$\textrm{cm}^2$ prior to film growth. GaN epilayers were grown at 1100$^{\circ}C$ for 1 hour after growing AlN buffer layers for 15-30 minutes at 1100$^{\circ}C$ with metal organic chemical vapor deposition (MOCVD). The properties of GaN epilayers were evaluated by X-Ray Diffraction (XRD), Scanning electron microscope (SEM) Photoluminescence (PL) at room temperature and Hall measurement The results showed that the GaN on ion implanted Si(111) markedly affected to the structural, optical and electrical characteristic of GaN layers.

  • PDF

The Effects of Ti Film Thicknesses and Si Substrate Orientations on Phase Transition of Tisi$_2$ ($TiSi_2$의 상전이에 미치는 박막의 두께 및 기판의 방위의 영향)

  • Yoon, Gang-Joong;Jeon, Hyeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.820-828
    • /
    • 1995
  • Ti-sillcides are formed on an atomically clean Si substrate and its phase transition and surface and interface morphologies are examined depending on the Ti-film thicknesses, deposition temperatures and Si substrate orientations. Ti film thicknesses of 400$\AA$ and 200$\AA$ have been deposited at elevated temperatures from 50$0^{\circ}C$ to 90$0^{\circ}C$ with increments of 10$0^{\circ}C$ on Si(100) and Si(111) Ti-silicides are formed and analyzed with using XRD, SEM, and TEM to verify the phase transition and the surface and interface morphologies. The phase transition from C49 to C54 is observed to occur around $650^{\circ}C$ and examined to show some retardation depending on the substrate orientation and film thickness. This retardation of phase transition is explained by the consideration based on the surface and volume free energies. A rough surface of C49 TiSi$_2$is exhibited because of characteristics of nonuniform diffusion across the interface while the smooth surface and island formation of C54 TiSi$_2$is examined.

  • PDF

A TEM Study on Growth Characteristics of GaN on Si(111) Substrate using MOCVD (Si(111) 기판 위에 MOCVD 법으로 성장시킨 GaN의 성장 특성에 관한 TEM 분석)

  • 신희연;정성훈;유지범;서수정;양철웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.135-140
    • /
    • 2003
  • The difference in lattice parameter and thermal expansion coefficient between GaN and Si which results in many defects into the grown GaN is larger than that between GaN and sapphire. In order to obtain high quality GaN films on Si substrate, it is essential to understand growth characteristics of GaN. In this study, GaN layers were grown on Si(111) substrates by MOCVD at three different GaN growth temperatures ($900^{\circ}C$, $1,000^{\circ}C$ and $1,100^{\circ}C$), using AlN and LT-GaN buffer layers. Using TEM, we carried out the comparative investigation of growth characteristics of GaN by characterizing lattice coherency, crystallinity, orientation relationship and defects formed (transition region, stacking fault, dislocation, etc). The localized region with high defect density was formed due to the lattice mismatch between AlN buffer layer and GaN. As the growth temperature of GaN increases, the defect density and surface roughness of GaN are decreased. In the case of GaN grown at $1,100^{\circ}$, growth thickness is decreased, and columns with out-plane misorientation are formed.

Free-standing graphene intercalated nanosheets on Si(111)

  • Pham, Trung T.;Sporken, Robert
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.297-308
    • /
    • 2017
  • By using electron beam evaporation under appropriate conditions, we obtained graphene intercalated sheets on Si(111) with an average crystallite size less than 11nm. The formation of such nanocrystalline graphene was found as a time-dependent function of carbon deposition at a substrate temperature of $1000^{\circ}C$. The structural and electronic properties as well as the surface morphology of such produced materials have been confirmed by reflection high energy electron diffraction, Auger electron spectroscopy, X-ray photoemission spectroscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy and scanning tunneling microscopy.

Solution growth of polycrystalline silicon on Al-Si coated borosilicate and quartz glass substrates for low cost solar cell application (저가태양전지에 응용을 위한 용액성장법에 의한 Al-Si층이 코팅된 유리기판상의 다결정 실리콘 박막성장에 관한 연구)

  • Lee, S.H.;Queisser, H.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.238-244
    • /
    • 1994
  • We investigated solution growth of silicon on borosilicate and quartz glass substrates in the temperature range of $800^{\circ}C~520^{\circ}C$. A thin Al-Si layer evaporated onto the substrate serves to improve the wetting between the substrate and the Al/Ga solvent. Nucleation takes place by a reaction of Al with $SiO_2$ from the substrate. We obtained silicon deposits with a grain size up to a few 100 $\mu\textrm{m}$. There was a perferential (111) orientation for the case of quartz glass substrates while there is a strong contribution of other orientations for the deposition of Si on borosilicate glass substrates.

  • PDF

The study of ${\mu}c-Si/CaF_2$/glass properties for thin film transistor application (박막트랜지스터 응용을 위한 ${\mu}c-Si/CaF_2$/glass 구조특성연구)

  • Kim, Do-Young;Ahn, Byeung-Jae;Lim, Dong-Gun;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1514-1516
    • /
    • 1999
  • This paper covers our efforts to improve the low carrier mobility and light instability of hydrogenated amorphous silicon (a-Si:H) films with microcrystalline silicon $({\mu}c-Si)$ films. We successfully prepared ${\mu}c-Si$ films on $CaF_2$/glass substrate by decomposition of $SiH_4$ in RPCVD system. The $CaF_2$ films on glass served as a seed layer for ${\mu}c-Si$ film growth. The XRD analysis on $CaF_2$/glass illustrated a (111) preferred $CaF_2$ grains with the lattice mismatch less than 5 % of Si. We achieved ${\mu}c-Si$ films with a crystalline volume fraction of 61 %, (111) and (220) crystal orientations. grain size of $706\AA$, activation energy of 0.49 eV, and Photo/dark conductivity ratio of 124. By using a $CaF_2$/glass structure. we were able to achieve an improved ${\mu}c-Si$ films at a low substrate temperature of $300^{\circ}C$.

  • PDF

Effect of Colloidal Silica and Pre-Coating of Cathode on Copper Electrodeposited Film (구리 전착층에 미치는 콜로이달실리카 및 음극 Pre-Coating의 영향)

  • Lee, Sang-Baek;Yun, Jeong-Mo;Park, Hyeong-Ho;Bae, In-Seong;Kim, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.569-574
    • /
    • 2001
  • The crystal structure, surface morphology and preferred orientation of the copper electrodeposit were investigated by the using sulfate bath with $SiO_2$suspensions and the cathode substrate Au sputtered. As by the addition of colloidal silica in copper electrolytic bath and Au pre-coating on substrate, the crystal particles of deposits was fined-down, made uniform and the account of particles were increased. Hardness of copper electrodeposits with colloidal silica increased about 15% in comparison with that of pure copper deposit film and (111), (200) and (311) plane of X-ray diffraction patterns were almost swept away, so preferred orientation of the copper deposits changed from (111) to (110) plane by codeposit $SiO_2$ and precoating the substrate.

  • PDF

Effects of Preferred Orientation and Microstructure on Mechanical Properties of Chemically Vapor Deposited SiC (화학증착 탄화규소막의 방향성과 미세구조가 증착층의 기계적 성질에 미치는 영향)

  • 김동주;김영욱;박상환;최두진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1103-1110
    • /
    • 1995
  • Silicon carbide (SiC) films have been deposited on the isotropic graphite by chemical vapor deposition. Change of deposition parameters affected significantly the microstructure and preferred orientation of SiC films. Preferred orientation of SiC films was (111) or (220), and microstructure showed the startified structure consisting of small crystallite or faceted columnar structure depending on the deposition parameters. For microhardness, (111) oriented film and stratified structure were superior to (220) oriented film and faceted columnar structure, respectively. Surface of (111) oriented films was less rough than that of (220) oriented films. Adhesion force between graphite substrate and SiC films was above 100N for crystalline films and 49N for amorphous film.

  • PDF

Improvement of Substrate and Insulationg Layer of FM Magnetic Tunneling Jundtion and the Study of Magnetic Transport (기판과 부도체층을 개선한 $FM/Al_2O_3/FM$ (FM=Ferromagnet) 자기터널링 접합제작 및 자기수송에 관한 연구)

  • 변상진;박병기;장인우;염민수;이재형;이긍원
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.245-250
    • /
    • 1999
  • The effect of substrate and oxidization time on $substrate /Py/Al_2O_3/Co\;(Py=Ni_{81}Fe_{19})$ tunnel junction was studied. Samples were prepared without breaking vacuum by changing shadow masks in-situ. The resistance of tunnel junctions increased, but measured MR decreased with oxidization time. Negative MR observed for samples of tunnel resistivity lower than 0.17 M$\Omega$ $({\mu}m)^2$. MR resistivity decreased with the change of substrates in the order of thermally oxidized Si(111), Si(100), Coring Glass 2948, Corning Glass 7059. Sign change and the variation of MR was explained with non uniform current effect.

  • PDF