• Title/Summary/Keyword: Shunt compensation

Search Result 104, Processing Time 0.022 seconds

A Study on Series Active Power Filter Compensating Unbalanced Source Voltage in 3phase-3wire system (불평형 전원전압을 보상하는 3상3선식 직렬형 능동전력필터에 관한 연구)

  • 오재훈;한윤석;김영석;원충연;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.386-393
    • /
    • 2001
  • A series active power filter compensating current harmonics and unbalanced source voltages in a 3phase-3wire power system is presented. The system is composed of series active power filter and shunt passive filters that are tuned at 5th and 7th harmonics. The proposed series active power filter improves harmonic compensation characteristics of the shunt passive filters, reduces source side harmonic currents and compensates the unbalanced source voltages. In the proposed algorithm, compensation voltage for harmonic reduction is calculated by a performance function, and compensation voltage for the unbalanced source voltage is calculated based on the synchronous reference frame. Some results obtained from the experimental model using the proposed method are Presented to demonstrate and confirm its validity.

  • PDF

Electromagnetic Transient Program Modeling for Analysis of Switching Over-Voltage on Shunt Reactor (분로리액터 개폐 과전압 해석을 위한 EMTP 모델링)

  • Oh, SeungRyle;Jun, InYoung;Han, KiSun;Kang, JiWon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.393-397
    • /
    • 2020
  • Shunt reactor, a facility for reactive power compensation, is switched several times a day depending on the load pattern. When the circuitbreaker opens the shunt reactor over-voltage is generated by several factors which degrade the insulating performance of internal parts of the circuit-breaker and cause severe voltage stress on the equipment in the power system. Transient phenomenon occurring during the switching of shunt reactor are available in laboratories that verify the performance of the circuit-breaker by simulating the power system. However, it is difficult to measure the transient phenomenon that occurs during actual operation in actual power system due to many limitations. Therefore, this paper deals with the modeling using EMTP to analyze the reignition and current chopping which causes more severe transient recovery voltage in the small inductive current breaking in actual power systems. In addition, this paper analyzes the main phenomenon that cause circuit-breaker failure in opening shunt reactor using EMTP model.

Fast-Transient Repetitive Control Strategy for a Three-phase LCL Filter-based Shunt Active Power Filter

  • Zeng, Zheng;Yang, Jia-Qiang;Chen, Shi-Lan;Huang, Jin
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.392-401
    • /
    • 2014
  • A fast-transient repetitive control strategy for a three-phase shunt active power filter is presented in this study to improve dynamic performance without sacrificing steady-state accuracy. The proposed approach requires one-sixth of the fundamental period required by conventional repetitive control methods as the repetitive control time delay in the synchronous reference frames. Therefore, the proposed method allows the system to achieve a fast dynamic response, and the program occupies minimal storage space. A proportional-integral regulator is also added to the current control loop to eliminate arbitrary-order harmonics and ensure system stability under severe harmonic distortion conditions. The design process of the corrector in the fast-transient repetitive controller is also presented in detail. The LCL filter resonance problem is avoided by the appropriately designed corrector, which increases the margin of system stability and maintains the original compensation current tracking accuracy. Finally, experimental results are presented to verify the feasibility of the proposed strategy.

A New Performance Function-Based Control Strategy for Hybrid Series Active Power Filter in Three-Phase Four-Wire Systems (3상 4선식 하이브리드 형 직렬 능동전력필터에 대한 새로운 성능함수 제어 이론)

  • 신재화;김진선;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.563-571
    • /
    • 2003
  • In this paper, the control algorithm and control method for a combined system of shunt passive filter and series active filter in 3-phase 4-wire system are discussed. Moreover, the three-phase four-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and its 3th harmonics are termed as triple and zero sequence components that do not cancel each other in the system neutral. Consequently, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control algorithm for a series hybrid active system, whereas the control approach it adopts may directly influence its compensation characteristics. Hence, the advantage of this control algorithm is direct extraction of compensation voltage reference and the required rating of the series active filter is much smaller than that of a conventional shunt active filter. Some experiments were executed and experimental results from a prototype active power filter confirm the suitability of the proposed approach.

Compensation of Source Voltage Unbalance and Current Harmonics in Series Active and Shunt Passive Power Filters

  • Lee G-Myoung;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.586-590
    • /
    • 2001
  • In this paper, a novel control scheme compensating source voltage unbalance and harmonic currents for hybrid active power filters is proposed, where no low/high-pass filters are used in compensation voltage composition. The phase angle and compensation voltages for source harmonic current and unbalanced voltage components are derived from the positive sequence component of the unbalanced voltage set, which is simply obtained by using digital all-pass filters. Since a balanced set of the source voltage obtained by scaling the positive sequence components is used as reference values for source current and load voltage, it is possible to eliminate the necessity of low/high-pass filters in the reference generation. Therefore the control algorithm is much simpler and gives more stable performance than the conventional method. In addition, the source harmonic current is eliminated by compensating for the harmonic voltage of the load side added to feedback control of the fundamental component.

  • PDF

Cooperation Schemes of the LTC and SC for Distribution Volt/Var Compensation

  • Choi, Joon-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.207-213
    • /
    • 2004
  • In this paper, the on-line volt/var control algorithms of the Load Tap Changer (LTC) transformer and Shunt Capacitor (SC) are proposed for distribution volt/var compensation. In the existing volt/var control of the distribution substation, the feeder voltage and reactive power demand of the distribution are mainly controlled by the LTC transformer tap position and on/off operation of the Sc. It is very difficult to maintain volt/var at the distribution networks within the satisfactory levels due to the discrete operation characteristics of the LTC and SC. In addition, there is the limitation of the LTC and SC operation times, which affects their functional lifetimes. The proposed volt/var control algorithm determines an optimal tap position of the LTC and on/off status of the SC at a distribution substation with multiple connected feeders. The mathematical equations of the proposed method are introduced. A simple case study is performed to verify the effectiveness of the proposed method.

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

the power flow control and voltage compensation by 20kVA prototype UPFC (20kVA급 Prototype UPFC의 전력조류제어와 모선전압보상)

  • Jeon, Jin-Hong;Kim, Ji-Won;Chun, Yeung-Han;Kim, Hak-Man;Kook, Kyung-Soo;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.349-352
    • /
    • 2001
  • FACTS technology is developed into the sophisticated system technology which combines conventional power system technology with power electronics, micro-process control, and information technology. Its objectives are achieving enhancement of the power system flexibility and maximum utilization of the power transfer capability through improvements of the system reliability, controllability, and efficiency [1]. As a series and shunt compensator, UPFC consists of two inverters with common dc link capacitor bank. It controls the magnitude of shunt bus voltage and real and reactive power flow of transmission line[2]. In this paper, we present the design, implementation and test results of developed 20kVA level prototype UPFC. It is applied to power system simulator and controls the real and reactive power flow and shunt bus voltage magnitude.

  • PDF

Harmonic Elimination and Reactive Power Compensation with a Novel Control Algorithm based Active Power Filter

  • Garanayak, Priyabrat;Panda, Gayadhar
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1619-1627
    • /
    • 2015
  • This paper presents a power system harmonic elimination using the mixed adaptive linear neural network and variable step-size leaky least mean square (ADALINE-VSSLLMS) control algorithm based active power filter (APF). The weight vector of ADALINE along with the variable step-size parameter and leakage coefficient of the VSSLLMS algorithm are automatically adjusted to eliminate harmonics from the distorted load current. For all iteration, the VSSLLMS algorithm selects a new rate of convergence for searching and runs the computations. The adopted shunt-hybrid APF (SHAPF) consists of an APF and a series of 7th tuned passive filter connected to each phase. The performance of the proposed ADALINE-VSSLLMS control algorithm employed for SHAPF is analyzed through a simulation in a MATLAB/Simulink environment. Experimental results of a real-time prototype validate the efficacy of the proposed control algorithm.

Novel Control Strategy for a UPQC under Distorted Source and Nonlinear Load Conditions

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 2013
  • This paper proposes a novel control strategy for a unified power quality conditioner (UPQC) including a series and a shunt active power filter (APF) to compensate the harmonics in both the distorted supply voltage and the nonlinear load current. In the series APF control scheme, a proportional-integral (PI) controller and a resonant controller tuned at six multiples of the fundamental frequency of the network ($6{\omega}_s$) are performed to compensate the harmonics in the distorted source. Meanwhile, a PI controller and three resonant controllers tuned at $6n{\omega}_s$(n=1, 2, 3) are designed in the shunt APF control scheme to mitigate the harmonic currents produced by nonlinear loads. The performance of the proposed UPQC is significantly improved when compared to that of the conventional control strategy thanks to the effective design of the resonant controllers. The feasibility of the proposed UPQC control scheme is validated through simulation and experimental results.