• 제목/요약/키워드: Shrinkage defect

Search Result 49, Processing Time 0.022 seconds

Modeling for the Fatigue Analysis of Al Alloy Casting Containing Internal Shrinkage Defect (내부 결함을 포함하는 알루미늄 합금 주조품의 피로해석을 위한 모델링)

  • Lee, Sung-Won;Kim, Hak-Ku;Hwang, Ho-Young;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.196-200
    • /
    • 2010
  • The structural stress and fatigue behavior of tensile specimen containing internal shrinkage defect were modeled. Real shrinkage defect in casting was scanned by industrial CT (computed tomography), and subsequently its shape was simplified by ellipsoidal primitives for the structural analysis (S.S.M., shape simplification method). The analysis results were compared with the results by real shrinkage shape without any simplification process. It was possible to consider real shrinkage of casting in stress analysis and the method to predict fatigue life of casting with defect was proposed.

Prediction of Drying Shrinkage behavior of Half PC Slab (주차장 무근콘크리트 컬링에 관한 실험적 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae;Gong, Min-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.88-89
    • /
    • 2017
  • Curling is caused by the shrinkage difference between surface and bottom side of concrete, and the cracks can be occurred by vehicle load after curling. It is important to investigate and predict the curling behavior to minimize the quality defect of concrete due to the curling. Therefore, the experimental and analytical investigation was carried out.

  • PDF

Contribution Analysis Using Shape Simplification Method for Casting Structure Shrinkage (주조 구조물 수축공의 형상단순화 기법을 통한 정적하중에 대한 영향도 분석)

  • Kwak, Si-Young;Lim, Chae-Ho;Baek, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.807-812
    • /
    • 2009
  • Most structure engineers give the casting components over-estimated factor of safety without any reasonable foundation due to the worries about the unavoidable defects such as shrinkages and porosity in castings; the engineers have little knowledge on the relation between the defect and structural behavior. And the workers in casting field also do not know how to control the defects by manufacturing; they do not know to where the defects move or until how size they reduce the defects. In this study, shrinkage defect was scanned by industrial computerized tomography instrument (CT), and subsequently was modeled to a spheroid primitive for structural analysis. Using these simplified models of shrinkage, we observed the effects of the defect on the results of the structural analysis. A commercial structural analysis code was used to do the analysis works. Considering the conclusions, it is possible to manage the shrinkages effectively in casting process and to design the products with more reliable

Effect of Shrinkage Defect on Fracture Impact Energy of A356 Cast Aluminum Alloy (A356 알루미늄 합금의 파단 충격에너지에 대한 수축공결함의 영향)

  • Chul, Hwang-Seong;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.34 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Internal defects, such as shrinkage during casting, cause stress concentrations and initiate cracking. Therefore, it is important to understand the effects of internal defects on the mechanical properties including the impact behavior. This study evaluates the effects of internal casting defects on the impact performance of A356 Al-alloy castings. The internal shrinkage defects in the casting impact specimen are scanned using an industrial Computed Tomography (CT) scanner, and drop impact tests are performed with varing impact velocities on the A356 casting aluminium specimen ($10mm{\times}10mm$ section area) in order to locate the fracture energy under an impact load. The specimens with defects with a diameter less than 0.35 mm exhibit equivalent fracture impact energies of approximately 32 J and those with a 1.7 mm diameter defect reduced the fracture impact energy by 35%.

Effect of Expanding Admixture and Shrinkage Reducing Agent on the Shrinkage Reducing Properties of Ultra High Performance Cement Mortar (팽창재 및 수축저감제가 초고성능 시멘트 모르타르의 수축특성에 미치는 영향)

  • Han, Dong-Yeop;Yu, Myoung-Youl;Lee, Hyun-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.61-64
    • /
    • 2006
  • Comparing with traditional high performance concrete, ultra high performance concrete (UHPC) has the property of high-tenacity. However, drying shrinkage and autogenous shrinkage can be arisen as the major defect to UHPC. In this study, therefore, it was tested to reduce drying shrinkage and autogeneous shrinkage by adding expanding admixture (EA) and shrinkage reducing agent (SRA). As a result, for a case drying shrinkage, the shrinkage was decreased by 94% when EA was exchanged, and it was decreased by 64% when SRA was added. For the case of autogenous shrinkage, the mortar was expanded at early age and the shrinkage was decreased by 87% when EA was exchanged, and the shrinkage was decreased by 70% when SRA was added.

  • PDF

Optimization of Ingot Mold Design Parameters for Austenite Heat-resistant Steel Through Computational Simulation (전산모사를 통한 오스테나이트계 내열강용 잉곳 몰드 설계 파라미터 최적화)

  • Hwang, SooBeen;Park, JongHwa;Jo, SangHyun;Park, SeongIk;Kim, YunJae;Kim, Donggyu
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.3-11
    • /
    • 2022
  • In this study, the parameters on the shrinkage defect of HR3C alloy was secured through computer simulation research, and the ingot mold with greater than 85% of sound area was designed and manufactured. Moreover, the optimized coagulation was proposed at design stage through computer simulation and test was performed upon ingot manufactured. After the test, the defect pattern was analyzed through cutting and non-destructive inspection to verify the parameter and ingot mold design. Based on the verification results, shrinkage defect parameters such as Niyama, Feed Efficiency, and Hot Tear Intensity of HR3C Alloys were obtained. In addition, through the secured parameters, a plan for designing ingot mold with a Non-defect area of 85% or more was secured.

A study on the reduction of blow hole defects in aluminum sand casting (알루미늄 사형주조에서 기공 결함 감소를 위한 연구)

  • Lee, Dong-Youn;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.52-57
    • /
    • 2020
  • In this study attempted to prevent defects due to blow holes among defects of sand casting products. It was intended to reduce the defect rate by reducing the blow hole of the inner surface. Currently, expectations and requirements for the quality level of non-ferrous aluminum casting in the casting industry are increasing. In addition, the shape is complex and the shrinkage precision is required. Among them, the test prototype is expensive to manufacture the mold, and the production time is also long, and the product is manufactured by sand casting. At this time, the highest defect rates are defects caused by shrinkage defects, surface defects, and blow holes.. At this study, the manufacturing time was shortened by using the shape of the fluid movement path in advance. Also, it is possible to reduce defects due to blow holes.

Cast Defect Quantify on the Simulation for Large Steel Ingots and Its Application (대형잉곳 전산모사 결함 정량화 및 활용연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Yoon, J.M.;Chae, Y.W.;Lee, D.H.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.94-97
    • /
    • 2009
  • Cast defect in large steel ingots are estimated in quality and compared each other cast conditions on simulation results by now. The cast defects, micro-crack, shrinkage, pin hole which are predictable in simulation with a reasonable accuracy. In this study, 15 ton steel ingot casting was simulated for solidification model and cast defect prediction. And the real cast was carried out in a foundry for the compeer to the simulation results, the cast defect prediction. Also, the quantity of predicted defect was tried to measuring with the defect mach counting for the various simulated cast conditions. The defect quantity work was used to find the optimized cast condition in DOE(design of experiment) procedure.

  • PDF

Solidifications Simulation of Gray Iron Sheave Product with Consideration of Graphite Precipitation (흑연정출을 고려한 회주철제 시브제품의 응고해석)

  • Ryu, Seong-Gon
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.139-143
    • /
    • 1999
  • Solidification simulation of gray cast iron sheave product was conducted with the consideration of graphite precipitation during solidification, and of casting processes such as post-inoculation method, treatment and rate, the result of which was aimed to be adopted in the field. In risering design(I), shrinkage cavities were predicted to occur in the part below the risers and center part of the product. While the former defect was considered to be due to the solidification behaviour of riser neck, the latter was due to the feeding channel. In design(II), the length of the riser neck was reduced and one top open riser was attached in the center of the product to prevent the formation of shrinkage cavities, whereby defect-free product was produced.

  • PDF

Effects of Processing and Designing Variables on Formation of Shrinkage Cavities in GC150 Gray Cast Iron (GC150 회주철의 수축결함생성에 미치는 주조 및 설계공정인자들의 영향)

  • Yu, Sung-Kon;Shin, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.580-586
    • /
    • 2002
  • The effect of processing and designing variables such as pouring temperature(1400 or $1500^{\circ}C$), inoculation and risering design(T and H type) on the formation of defects such as external depression, primary and secondary shrinkage cavities in GC150 gray cast iron was investigated. In T type risering design, external depression or primary shrinkage cavity due to liquid contraction was formed in all of the eight cases. Regardless of its modulus value, the riser could not function properly in T type risering design because directional solidification was not promoted toward the riser. On the other hand, the four cases of H type risering design in which thermal sleeves were set onto the risers produced defect-free castings. In both types of the risering designs, secondary shrinkage cavity caused by solidification contraction was not observed in the casting because of the expansion pressure due to graphite precipitation and the application of rigid pep-set mold. The degree of external depression or primary shrinkage cavity was reduced with lowered pouring temperature. The effect of inoculation was diminished because of the high carbon equivalent of GC 150 gray cast iron.