• Title/Summary/Keyword: Shrinkage Property

Search Result 230, Processing Time 0.03 seconds

A Study of Relations of Chain Lengths and Properties for Bifunctional linear DGEBF/Linear Amino (EDA, HMDA) Cure Systems (선형 이관능성 DGEBF/선형아민(EDA, HMDA) 경화계의 경화제 사슬길이와 물성과의 관계에 대한 연구)

  • Myung In-Ho;Lee Jae-Rock
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.37-43
    • /
    • 2004
  • To determine the effect of chain length and chemical structure of linear amine curing agents on thermal and mechanical properties, a standard bifunctional linear DGEBF epoxy resin was cured with EDA and HMDA having amine group at the both ends of main chain in a stoichiometrically equivalent ratio in condition of preliminary and post cure. From this work, the effect of linear amine curing agents on the thermal and mechanical properties is significantly influenced by numbers of carbon atoms of main chain. In contrast, the results show that the DCEBF/EDA system having two carbons had higher values in the thermal stability, density, shrinkage (%), grass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBF/HMDA system having six carbons, whereas the DGEBF/EDA cure system had relatively low values in maximum ekothermic temperature, maximum conversion of epoxide, thermal expansion coefficient than the DGEBF/HDMA cure system. These findings indicate that the packing capability (rigid property) in the EDA structure affects the thermal and mechanical properties predominantly. It shows that flexural fracture properties have a close relation to flexural modulus and strength.

Property Changes due to Numbers of Nitrogen Atom Bonded at Ethyl Group, Included in Main Chain of Curing Agents of DGEBGF/Linear Amino Systems (DGEBF/선형아민 계에서의 경화제 주쇄에 포함된 에틸기에 결합된 질소원자 개수에 따른 물성변화 연구)

  • Myung In-Ho;Lee Jae-Rock
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.44-51
    • /
    • 2004
  • To determine the effect of numbers of nitrogen atom bonded at ethyl group included in main chain of linear amine curing agents of epoxy-cure systems on the thermal and mechanical properties, standard epoxy resin DGEBF was cured with DETA, TETA and TEPA in a stoichiometrically equivalent ratio. From this work, the effect of curing agents of the DGEBF/amine systems oil the thermal and mechanical properties was significantly influenced by numbers of nitrogen atom of curing agents. The results showed that heat of reaction increased, and maximum exothermic temperature decreased with the decrease of numbers of nitrogen atom. In case of cured systems, density and maximum conversion(%) had no relation to numbers of nitrogen atom, but flexural modulus and tensile modulus increased with the decrease of numbers of nitrogen atom in main chain. Thermal stability, shrinkage(%), Tg, tensile and flexural strength showed irregular tendency having nothing to do with numbers of nitrogem atom at a sight. This findings imply that the differences in the maximum conversion(%) about the chain length of curing agents affect the thermal and mechanical properties.

A STUDY ON THE PHYSICAL PROPERTIES OF ROOT CANAL SEALERS (근관충전용 실러의 물리적 성질에 관한 연구)

  • Chang, Young-In;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.142-151
    • /
    • 1995
  • The purpose of this study was to compare and estimate the physical properties of five root canal sealers classified Calciobiotic root canals sealer as calcium hydroxide based sealer, Apatite root sealer type II as calcium phosphate based sealer, AH-26 as resin based sealer, Canals and Pulpdent root canals sealer as zinc oxide eugenol based sealer. The author investigated dimensional change and flow rate of canal sealers, diametral tensile strength and shear bond strength of sealers to dentin to evaluate the physical properties on affect of complete obturation of root canal and performed the total 100 specimens of each 25 sealers under the condition of root temperature according to manufacturer's instructions. All specimens were stored at $37{\pm}1^{\circ}C$ in 100 % relative humidity. A microscope for measurement of micro distance is used for the dimensional change test and evacuation methods using vaccum were used for the flow rate test. The result differed by the storage time measured on the tests of diametral tensile strength and shear bond strength to dentin. The following results were obtained ; 1 On the test of dimensional change, Canals and Pulpdent expanded slightly, AH-26 and Apatite showed the severe shrinkage after 48 hours. 2. AH-26 and Apatite were the excellent with each 24.59mm, 31.19mm after 3 minutes in the aspect of flow property. 3. On the diametral tensile strength, Calciobiotic root canals sealer showed the highest strength with 27.13kg/$cm^2$ after 48 hours, Apatite root sealer type II showed highest strength with 84.57kg/$cm^2$ after 120 hours. 4. On the shear bond strength to dentin, AH-26 was most excellent with 55.73kgf/$cm^2$ after 24 hours and with 134.71kgf/$cm^2$ after 120 hours.

  • PDF

Effect of Milling Condition on Low-temperature Sinterability and Electrical Properties of BaTiO3 Ceramics (Milling 조건에 따른 BaTiO3의 저온 소결성 및 전기적 특성 변화)

  • Hong, Min-Hee;Sohn, Sung-Bum;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.200-210
    • /
    • 2009
  • It is necessary to minimize the mismatch of sintering shrinkage between dielectric ceramic and Ni inner electrode layers for the purpose of developing the ultra high-capacity multi layered ceramic condenser(MLCC). Thus, low temperature sintering of dielectric $BaTiO_3$ ceramic should be precedently investigated. In this work, the influence of the milling condition on sintering behavior and electrical properties of $BaTiO_3$ ceramics was investigated in the $BaTiO_3$(BT)-Mg-Dy-Mn-Ba system with borosilicate glass as a sintering agent. As milling time increased, specific surface area(SSA) of the powder increased linearly, while both sinterability and dielectric property were found to be drastically decreased with an increasing SSA. It was also revealed that the sinterability of the excessively milled $BaTiO_3$ ceramics could be recovered by increasing Ba content, rather than increasing glass addition. These results suggest that the sintering behavior of $BaTiO_3$ ceramics under the high SSA was more strongly dependent on the transient liquid phase caused by Ba addition, than the liquid phase from additional glass.

Structural and Property Changes in Glass-like Carbons Formed by Heat Treatment and Addition of Filler

  • Kim, Jangsoon;Kim, Myung-Soo;Hahm, Hyun-Sik;Lim, Yun-Soo
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.399-406
    • /
    • 2004
  • Glass-like carbon precursors shrink significantly during curing and carbonization, which leads to crack formation and bending. Cured furan resin powder and ethanol were added to furan resin to diminish the weight loss, to suppress the shrinkage and bending, and to readily release the gases evolved during polymerization and curing. Curing and carbonization were controlled by pressure and slow heating to avoid damage to the samples. The effect of the filler and ethanol on the fabrication process was examined by measuring the properties of the glass-like carbon, such as the specific gravity, bending strength, electrical resistivity, and microstructural change. The specific gravities of the filler-added glass-like carbons were higher than those of the ethanol-added samples because of the formation of macropores from the vaporization of ethanol during the curing and polymerization processes. Although the ethanol-added glass-like carbons exhibited lower bending strengths after carbonization than did the filler-added samples, the opposite result was observed after aging at 2,600$^{\circ}C$. We found that the macropores created from ethanol were contracted and removed upon heat treatment. The electrical resistivity of the glass-like carbon aged at 2,600$^{\circ}C$ was lower than those of the samples carbonized at 1,000$^{\circ}C$. We attribute this phenomenon to the fact that aging at high temperature led to well-developed microstructures, the removal of macropores, and the reduction of the surface area.

Preparation and Characterization of PVdF-HFP Microporous Membranes for Li-ion Rechargeable Battery (Poly(vinylidene fluoride-hexafluoropropylene)를 이용한 이차전지용 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Yu, Dae-Hyun;Jeong, Mi-Ae;Rhim, Ji-Won;Byun, Hong-Sik;Yoo, Hyun-Oh;Kim, Jong-Man;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.359-368
    • /
    • 2007
  • The copolymer membranes, poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) were prepared by phase inversion method using as an additive with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The highest porosity of the membrane was 60%. The surface and cross-section of the membranes was observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM). Tensile strength of measured membranes is presented the maximum 6.57 MPa at 30 wt% of PVdF-HFP.

Sintering Behavior and Thermal Conductivity of Aluminum Nitride Ceramics with MgO-CaO-Al2O3-SiO2 Nano-glass Additive (나노 MgO-CaO-Al2O3-SiO2 glass 첨가제를 가진 AlN의 소결거동 및 열전도도)

  • Baik, Su-Hyun;Kim, Kyung Min;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.426-434
    • /
    • 2018
  • In this study, $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) nanocomposite glass powder having a mean particle size of 50 nm and a specific surface area of $40m^2/g$ is used as a sintering additive for AlN ceramics. Densification behaviors and thermal properties of AlN with 5 wt% MCAS nano-glass additive are investigated. Dilatometric analysis and isothermal sintering of AlN-5wt% MCAS compact demonstrates that the shrinkage of the AlN specimen increases significantly above $1,300^{\circ}C$ via liquid phase sintering of MCAS additive, and complete densification could be achieved after sintering at $1,600^{\circ}C$, which is a reduction in sintering temperature by $200^{\circ}C$ compared to conventional $AlN-Y_2O_3$ systems. The MCAS glass phase is satisfactorily distributed between AlN particles after sintering at $1,600^{\circ}C$, existing as an amorphous secondary phase. The AlN specimen attained a thermal conductivity of $82.6W/m{\cdot}K$ at $1,600^{\circ}C$.

The Effects of Heat Treatment Temperature on Mechanical Property of 93W-6.3Ni-0.7Fe Heavy Alloy (93W-6.3Ni-0.7Fe 중합금에서 열처리온도에 따른 기계적 성질변화)

  • 김은표
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.42-49
    • /
    • 1998
  • A study on the improvement of the impact energy in 93W heavy alloy with a Ni/Fe ratio of 9/1 has been carried out as a function of heat treatment temperature. The obtained results were compared to that of the traditional alloy system in which the Ni/Fe ratio is 7/3 or 8/2. With increasing heat treatment temperature from 1150 to 125$0^{\circ}C$, the impact energy of the alloy with the Ni/Fe ratio of 9/1 is remarkably increased from 42 to 72 J, which is higher than that of traditional alloy, up to 118$0^{\circ}C$ and then saturated. Fracture mode was also changed from brittle W/W boundary failure to W cleavage. The temperature showing the dramatic shrinkage by dilatometric anaysis of the heavy alloy with Ni/Fe ratio of 9/1 was found to be 1483 $^{\circ}C$, which is higher than that (146$0^{\circ}C$) of the heavy alloy with Ni/Fe ratio of 7/3. Auger Electron Spectroscopy showed that the segregation of impurities, such as S, P, and C in W/W grain boundary was considerably decreased with increasing heat treatment temperature from 1150 to l18$0^{\circ}C$. From the above results, it was found that the impurity segregation in W/W grain boundary played an important role on the decrease of impact properties, and the heat treatment temperature should be appropriately chosen, as considering the Ni/Fe ratio of the alloy, in order to get good impact properties.

  • PDF

Analysis of Strengthening Veriables for Strengthened Bridge Decks by Externally Bonded Sheet (보강판으로 외부부착 보강된 교량 바닥판의 성능향상을 위한 변수 해석)

  • 심종성;오흥섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.556-565
    • /
    • 2002
  • The concrete bridge decks on the main girder will usually develop initial cracks in the longitudinal or the transverse direction due to dry shrinkage and temperature change, and as the bridge decks age the crack will gradually develop in different directions due to repeated cyclic loads. The strengthening direction of the concrete bridge deck is a very important factor in improving proper structural behavior. Therefore, in this study, theoretical analyses of strengthened bridge decks were performed using the nonlinear finite element method. To improve the accuracy of the analytical result, boundary conditions and material property of strengthening material was simulated by laboratory condition and test results, respectively. The effect of the strengthening direction and the amount of strengthening material were estimated and compared to the experimental results. The efficiency of the strengthened bridge decks by strengthening variables such as the amount, width and thickness of CFS was observed.

Effect of Curing Conditions on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (양생조건에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yong-Cheol;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.909-912
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. But SHCC has serious problem as drying shrinkage because silica powder is used to make SHCC in order to improve bond strength between reinforcing fibers and cement matrix. Therefore, curing method (period and temperature) is very important for SHCC to show high tensile performance. a variety of experiments have being performed to access the performance of SHCC recently. This research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA), Polyethylene (PE) fibers and steel cord (SC), and how curing method affects the composite property, and ultimately its strain-hardening performance.

  • PDF