DOI QR코드

DOI QR Code

Sintering Behavior and Thermal Conductivity of Aluminum Nitride Ceramics with MgO-CaO-Al2O3-SiO2 Nano-glass Additive

나노 MgO-CaO-Al2O3-SiO2 glass 첨가제를 가진 AlN의 소결거동 및 열전도도

  • Baik, Su-Hyun (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kyung Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 백수현 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김경민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 류성수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2018.10.15
  • Accepted : 2018.10.19
  • Published : 2018.10.28

Abstract

In this study, $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) nanocomposite glass powder having a mean particle size of 50 nm and a specific surface area of $40m^2/g$ is used as a sintering additive for AlN ceramics. Densification behaviors and thermal properties of AlN with 5 wt% MCAS nano-glass additive are investigated. Dilatometric analysis and isothermal sintering of AlN-5wt% MCAS compact demonstrates that the shrinkage of the AlN specimen increases significantly above $1,300^{\circ}C$ via liquid phase sintering of MCAS additive, and complete densification could be achieved after sintering at $1,600^{\circ}C$, which is a reduction in sintering temperature by $200^{\circ}C$ compared to conventional $AlN-Y_2O_3$ systems. The MCAS glass phase is satisfactorily distributed between AlN particles after sintering at $1,600^{\circ}C$, existing as an amorphous secondary phase. The AlN specimen attained a thermal conductivity of $82.6W/m{\cdot}K$ at $1,600^{\circ}C$.

Keywords

References

  1. Y. Baik and R. A. L. Drew: Key Eng. Mater., 122-124 (1996) 553. https://doi.org/10.4028/www.scientific.net/KEM.122-124.553
  2. R. E. Simons: Solid State Technol., 26 (1983) 131. https://doi.org/10.1016/0038-1101(83)90114-4
  3. C. Zweben: JOM, 50 (1998) 47. https://doi.org/10.1007/s11837-998-0128-6
  4. Y. Kurokawa, Z. Utsumi, H. Takamizawa, T. Kamata and S. Noguchi: IEEE Trans. Comp., Hybrids, Manuf. Technol., 8 (1985) 247. https://doi.org/10.1109/TCHMT.1985.1136500
  5. T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie and R.A. Cutler: J. Am. Ceram. Soc., 80 (1997) 1421.
  6. A. V. Virkar, T. B. Jackson and R. A. Cutler: J. Am. Ceram. Soc., 72 (1989) 2031. https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  7. G. A. Slack: J. Phys. Chem. Solids, 34 (1973) 321. https://doi.org/10.1016/0022-3697(73)90092-9
  8. L. M. Sheppard: Am. Ceram. Soc. Bull., 69 (1990) 1801.
  9. K. Komeya, H. Inoue and A. Tsuge: J. Am. Ceram. Soc., 54 (1974) 411.
  10. K. Komeya, A. Tsuge, H. Inoue and H. Ohta: J. Mater. Sci. Lett., 1 (1982) 325. https://doi.org/10.1007/BF00726476
  11. N. Kuramoto, H. Taniguchi and I. Aso: Am. Ceram. Soc. Bull., 68 (1989) 883.
  12. A. L. Molisani, H. N. Yoshimura, H. Goldenstein and K. Watari: J. Eur. Ceram. Soc., 26 (2006) 3431. https://doi.org/10.1016/j.jeurceramsoc.2005.08.010
  13. T. B. Troczynski and P. S. Nicholson: J. Am. Ceram. Soc., 72 (1989) 1488. https://doi.org/10.1111/j.1151-2916.1989.tb07684.x
  14. E. Treicher, T. Chartier, P. Bosch, M.F. Denanot and J. Rabier: J. Eur. Ceram. Soc., 6 (1990) 23. https://doi.org/10.1016/0955-2219(90)90031-A
  15. J. Jarrige, K. Bouzouita, C. Doradoux and M. Billy: J. Eur. Ceram. Soc., 12 (1993) 279. https://doi.org/10.1016/0955-2219(93)90103-X
  16. K. Watari, H.J. Hwang, M. Toriyama and S. Kanzaki: J. Mater. Res., 14 (1999) 1409. https://doi.org/10.1557/JMR.1999.0191
  17. Y. Liu, H. Zhou, L. Qiao and Y. Wu: J. Mater. Sci. Lett., 18 (1999) 703. https://doi.org/10.1023/A:1006692111736
  18. L. Qiao, H. Zhou, H. Xue and S. Wang: J. Eur. Ceram. Soc., 23 (2003) 61. https://doi.org/10.1016/S0955-2219(02)00079-1
  19. C. M. Cheng, C. F. Yang, S. H. Lo and T. S. Tseng: J. Eur. Ceram. Soc., 20 (2000) 1061. https://doi.org/10.1016/S0955-2219(99)00247-2
  20. Q. Zhang, G. Jiang, H. Zhuang, W. Li, X. Fu and D. Yan: Mater. Sci. Eng., A, 352 (2003) 217. https://doi.org/10.1016/S0921-5093(02)00904-8
  21. C. F. Yang, C. M. Cheng, H. H. Chung and C. C. Chan: Key Eng. Mater., 336-338 (2007) 1868. https://doi.org/10.4028/www.scientific.net/KEM.336-338.1868
  22. H. J. Lee, S. W. Kim and S. S. Ryu: Int. J. Refract. Met. Hard Mater, 53 (2015) 46. https://doi.org/10.1016/j.ijrmhm.2015.04.013
  23. H. M. Lee, K. Bharathi and D. K. Kim: Adv. Eng. Mater., 16 (2014) 65. https://doi.org/10.1002/adem.201300214
  24. J. Y. Qiu, Y. Hotta and K. Watari: J. Am. Ceram. Soc., 89 (2006) 377. https://doi.org/10.1111/j.1551-2916.2005.00692.x
  25. H. J. Lee, W. S. Cho, H. J. Kim, W. Pan, M. Shahid and S. S. Ryu: Electron. Mater. Lett., 12 (2016) 732. https://doi.org/10.1007/s13391-016-6087-0
  26. B. M. Abel, J. C. Mauro, M. M. Smedskjaer, J. M. Morgan, C. L. LaPierre, G. R. Swan, M. E. Mack, A. J. Ellison: J. Non-Cryst. Solids, 363 (2013) 39. https://doi.org/10.1016/j.jnoncrysol.2012.12.020
  27. A. L. Molisani, H. N. Yoshimura and H. Goldenstein,: J. Mater. Sci. Mater. Elec., 20 (2009) 1.
  28. A. V. Virkar, T. B. Jackson and R. A. Cutler: J. Am. Ceram. Soc., 72 (1989) 2031. https://doi.org/10.1111/j.1151-2916.1989.tb06027.x
  29. S. Jang and S. Kang: Ceram. Int., 38S (2012) S543.

Cited by

  1. Effect of MgO-CaO-Al2O3-SiO2 Glass Additive Content on Properties of Aluminum Nitride Ceramics vol.25, pp.6, 2018, https://doi.org/10.4150/KPMI.2018.25.6.494