• Title/Summary/Keyword: Short-term prediction

Search Result 628, Processing Time 0.027 seconds

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

A Short-Term Prediction Method of the IGS RTS Clock Correction by using LSTM Network

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.209-214
    • /
    • 2019
  • Precise point positioning (PPP) requires precise orbit and clock products. International GNSS service (IGS) real-time service (RTS) data can be used in real-time for PPP, but it may not be possible to receive these corrections for a short time due to internet or hardware failure. In addition, the time required for IGS to combine RTS data from each analysis center results in a delay of about 30 seconds for the RTS data. Short-term orbit prediction can be possible because it includes the rate of correction, but the clock correction only provides bias. Thus, a short-term prediction model is needed to preidict RTS clock corrections. In this paper, we used a long short-term memory (LSTM) network to predict RTS clock correction for three minutes. The prediction accuracy of the LSTM was compared with that of the polynomial model. After applying the predicted clock corrections to the broadcast ephemeris, we performed PPP and analyzed the positioning accuracy. The LSTM network predicted the clock correction within 2 cm error, and the PPP accuracy is almost the same as received RTS data.

Variability of Short Term Creep Rupture Time and Life Prediction in Stainless Steels (스테인리스 강의 단시간 크리프 파단시간의 변동성과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.97-102
    • /
    • 2010
  • This paper deals with the variability of short term creep rupture time based on previous creep rupture tests and the statistical methodology of the creep life prediction. The results of creep tests performed using constant uniaxial stresses at 600, 650, and $700^{\circ}C$ elevated temperatures were used for a statistical analysis of the inter-specimen variability of the short term creep rupture time. Even under carefully controlled identical testing conditions, the observed short-term creep rupture time showed obvious inter-specimen variability. The statistical aspect of the short term creep rupture time was analyzed using a Weibull statistical analysis. The effect of creep stress on the variability of the creep rupture time was decreased with an increase in the stress level. The effect of the temperature on the variability also decreased with increasing temperature. A long term creep life prediction method that considers this statistical variability is presented. The presented method is in good agreement with the Lason-Miller Parameter (LMP) life prediction method.

Long-term prediction of safety parameters with uncertainty estimation in emergency situations at nuclear power plants

  • Hyojin Kim;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1630-1643
    • /
    • 2023
  • The correct situation awareness (SA) of operators is important for managing nuclear power plants (NPPs), particularly in accident-related situations. Among the three levels of SA suggested by Ensley, Level 3 SA (i.e., projection of the future status of the situation) is challenging because of the complexity of NPPs as well as the uncertainty of accidents. Hence, several prediction methods using artificial intelligence techniques have been proposed to assist operators in accident prediction. However, these methods only predict short-term plant status (e.g., the status after a few minutes) and do not provide information regarding the uncertainty associated with the prediction. This paper proposes an algorithm that can predict the multivariate and long-term behavior of plant parameters for 2 h with 120 steps and provide the uncertainty of the prediction. The algorithm applies bidirectional long short-term memory and an attention mechanism, which enable the algorithm to predict the precise long-term trends of the parameters with high prediction accuracy. A conditional variational autoencoder was used to provide uncertainty information about the network prediction. The algorithm was trained, optimized, and validated using a compact nuclear simulator for a Westinghouse 900 MWe NPP.

A Study on development of short term electric load prediction system with the genetic algorithm and the fuzzy system (유전자알고리즘과 퍼지시스템을 이용한 단기부하예측 시스템 개발에 관한 연구)

  • Kang, Hwan-Il;Jang, Woo-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.730-735
    • /
    • 2006
  • This paper proposes a time series prediction method for the short term electrical load will) the fuzzy system and the genetic algorithm. At first, we obtain the optimal fuzzy membership function using the genetic algorithm. With the optimal fuzzy rules and its input differences, a better time prediction system may be obtained. We obtain good results for the time prediction of the short term electric load by the proposed algorithm. In addition we implement the graphic user interface for the proposed algorithms. Finally, we implement the regional prediction system for the electric load.

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.

Modification of Creep-Prediction Equation of Concrete utilizing Short-term Creep Test (단기 크리프 시험 결과를 이용한 콘크리트의 크리프 예측시의 수정)

  • 송영철;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.69-78
    • /
    • 2000
  • Creep of concrete is the most dominating factor affecting time-dependent deformations of concrete structures. Especially, creep deformation for design and construction in prestressed concrete structures should be predicted accurately because of its close relation with the loss in prestree of prestressed concrete structures. Existing creep-prediction models for special applications contain several impractical factors such as the lack ok accuracy, the requirement of long-term test and the lack of versatility for change in material properties, ets., which should be improved. In order to improve those drawbacks, a methodology to modify the creep-prediction equation specified in current Korean concrete structures design standard (KCI-99), which underestimates creep of concrete and does not consider change of condition in mixture design, is proposed. In this study, short-term creep tests were carried out for early-age concrete within 28 days after loading and their test results on influencing factors in the equation are analysed. Then, the prediction equation was modified by using the early-age creep test results. The modified prediction equation was verified by comparing their results with results obtained from long-term creep test.

Development of a Short-term Model for Ozone Using OPI (오존최대농도지표를 이용한 오존단기예측모형 개발)

  • 전의찬;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.545-554
    • /
    • 1999
  • We would like to develop a short-term model to predict the time-related concentration of ozone whose reaction mechanism is complex. The paper targets Seoul where an ozone alert system has recently been employed. In order to develop a short-term prediction model for ozone, we suggested the Ozone Peak Indicator(OPI), an equivalent of the potential daily maximum ozone concentration, with precursors being the only limiting factor, and we calculated the Ozone Peak Indicarot as OPI={$ rac{(O_3)_{max}cdot(H_{eH})_{max}(Rad)_{max}$ to preclude the influence of mixing height and solar radiation on the daily maximum ozone concentration. The OPI on the day of the prediction is to be calcultated by using the relation between OPI and the initial value of precursors. The basic prediction formula for time-related ozone concentration was established as $O_3(1)={(OPI)cdot Rad(t-2)H_{eH}}$, using the OPI, solar radiation two hours before prediction and mixing height. We developed, along with the basic formula for predicting photochemical oxidants, "SEOM"(Seoul Empirical Oxidants Model), a Fortran program that helps predict solar radiation and mixing height needed in the prediction of ozone pollution. When this model was applied to Seoul and an analysis of the correlation between the observed and the predicted ozone concentrations was made through SEOM, there appeared a very high correlation, with a coefficient of 0.815. SEOM can be described as a short-term prediction model for ozone concentration in large cities that takes into account the initial values of precursors, and changes in solar radiation and mixing height. SEOM can reflect the local characteristics of a particular and region can yield relatively good prediction results by a simple data input process.t process.

  • PDF

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

Development of a Prediction Model of Solar Irradiances Using LSTM for Use in Building Predictive Control (건물 예측 제어용 LSTM 기반 일사 예측 모델)

  • Jeon, Byung-Ki;Lee, Kyung-Ho;Kim, Eui-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.41-52
    • /
    • 2019
  • The purpose of the work is to develop a simple solar irradiance prediction model using a deep learning method, the LSTM (long term short term memory). Other than existing prediction models, the proposed one uses only the cloudiness among the information forecasted from the national meterological forecast center. The future cloudiness is generally announced with four categories and for three-hour intervals. In this work, a daily irradiance pattern is used as an input vector to the LSTM together with that cloudiness information. The proposed model showed an error of 5% for learning and 30% for prediction. This level of error has lower influence on the load prediction in typical building cases.