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1. INTRODUCTION

In the field of aviation and transportation where precise 

positioning is required, it is necessary to estimate the positions 

using the global navigation satellite system (GNSS) by removing 

errors related to GNSS orbits, clocks, and signals. Typically, 

international GNSS service (IGS) ultra-rapid data or real-time 

service (RTS) correction data is used to correct GNSS orbit and 

clock errors in real-time. IGS ultra-rapid data includes precise 

orbit and clock data predicted over 24 hours, but the longer the 

prediction time, the lower the precision. RTS provides real-time 

orbit and clock data that can be applied to navigation messages 

over the internet (IGS 2019). However, in situations where RTS 

corrections cannot be received because of unstable hardware 

or internet environment, short-term prediction is needed due 
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to the delay in combining data. Since orbit correction data 

includes information related to the rate of change, short-term 

predictions are possible. However, clock correction data only 

provides bias information, so prediction using the model is 

necessary.

A wide variety of studies have been performed on the 

prediction of RTS corrections in the past. Hadas & Bosy 

(2015) conducted a study on the prediction of short-term 

RTS clock correction data using polynomials. Nie et al. 

(2018) performed a study on prediction based on a harmonic 

function model using ultra-rapid data and RTS clock 

correction data. For long-term predictions, some studies 

combined artificial neural networks, genetic algorithms (GA), 

and auto-regressive moving-average (ARMA) models, but the 

clock predictions in those studies varied linearly (Kim & Kim 

2015, 2017). Recently, multiple studies have been performed 

on predicting signals based on deep learning. Among them, 

the long short-term memory (LSTM) network is a model 

suitable for time series prediction, and is mainly used for 

short-term predictions of market prices (Nandakumar et al. 

2018, Rundo et al. 2019) and also to predict words in speech 

(Shechtman & Mordechay 2018).
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This study is about the predicting RTS clock corrections 

using a bidirectional LSTM (BiLSTM) network, a network that 

adds a reverse layer to the LSTM networks. After predicting 

the RTS clock for 3 minutes, we compared it with the accuracy 

with the polynomial model proposed by Hadas. After applying 

the predicted clock corrections to the broadcast ephemeris, 

we performed precise point positioning (PPP) and compared 

the positioning accuracy of polynomial model.

2. RTS CORRECTIONS AND POLYNOMIAL 
MODEL

2.1 RTS Corrections

IGS RTS corrections are provided in the form of radio 

technical commission for maritime services (RTCM) state 

space representation (SSR), and users can download them 

using the network transport of RTCM via Internet protocol 

(NTRIP) (Elsobeiey & Al-Harbi 2016). Nine analysis centers 

use the data from 220 permanent stations to generate RTS 

corrections, and IGS currently provides RTS corrections for 

each analysis center and combination solutions (Elsobeiey 

& Al-Harbi 2016). RTS corrections consist of satellite orbit, 

clock, and code bias, which are included in message types 

(MT) 1057, 1058, and 1059, respectively (RTCM 2013). 

The combined RTS data includes satellite orbit correction 

transmitted every 60 seconds and clock corrections 

transmitted every 10 seconds.

The orbit data includes the corrections and their rate of 

change in the radial, along-track, and cross-track directions. 

Clock data is transmitted in the form of quadratic polynomial 

coefficients. However, IGS03 data only provides bias values. 

When using the RTS corrections, you need to compare the 

issue of data (IOD) contained in the RTS message with the 

IOD of the GPS navigation message. This is because the IOD 

changes when GPS navigation message is updated, and the 

corrections are updated when the IOD changes.

2.2 Polynomial Model

The prediction method proposed by Hadas & Bosy (2015) 

applies a polynomial model to predict RTS data. It can only 

be applied to RTS data with the same IOD, so it cannot be 

used when the IOD changes. As shown in Eq. (1) below, a 

fifth-order polynomial model was used in this study because 

it had the smallest fitting error in paper by Hadas & Bosy 

(2015) and in our tests.

 2 3 4 5
0 1 2 3 4 5ta a a t a t a t a t a t= + + + + +  (1)

where at is the clock correction at time t, and a0 to a5 are 

polynomial coefficients calculated from the RTS clock 

corrections.

3. LSTM NETWORK AND PREDICTION 
METHOD

3.1 LSTM Network

A LSTM network is a type of deep learning developed to 

address the long-term dependency problems that arise from 

the long-term learning of recurrent neural networks (RNN) 

(Hochreiter & Schmidhuber 1997). For RNNs, the gradient used 

to update the weights vanishes when learning long-term data. 

To solve this problem, as shown in Fig. 1, the LSTM network 

uses an input gate, forget gate, and output gate to control the 

cell state in the hidden state of the RNN. Each gate calculates 

the output of the gate by combining the current input with the 

previous network output, as shown in Eq. (2) (Cui et al. 2018).

 1( )t x t h tf f W x W h b−= + +  (2)

where Wx and Wh are the weights for the current input xt and 

previous output ht-1, b is the gate bias, and f ̄ is the activation 

function. As shown in Fig. 1, sigmoid functions are mainly 

used as the activation function of the forget gate. If the 

function value is 0, the previous cell state is forgotten; if the 

value is 1, the previous cell state is propagated forward.

The input gate propagates the current input and the past 

cell state to two terminals as shown in Fig. 1. The current cell 

state ct is a linear combination of the output of the forget gate 

multiplied by the past cell state and the output of the current 

input gate, as shown in Eq. (3) (Cui et al. 2018).

 1 it t t t tc f c g−= ∗ + ∗  (3)

where it and gt are the outputs of the input gate calculated by 

Fig. 1. LSTM network architecture.
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the sigmoid function and the hyperbolic tangent function, 

respectively. As shown in Eq. (4), the final state of the network 

is calculated by combining the output of the output gate, 

which is combined with the weight of the output gate, the 

current input, and the past cell state, as in Eq. (2), with the 

current cell state.

 tanh( )t t th o c= ∗   (4)

The BiLSTM network, a network that adds a reverse 

forward propagation layer to the LSTM network, calculates 

the output of the network by combining the output state 

from the forward propagation layer and the output state from 

the backward propagation layer. The structure of BiLSTM 

is shown in Fig. 2, and adding the backward propagation 

layer improves the prediction performance for classification 

problems as well as time series prediction problems (Graves 

& Schmidhuber 2005, Cui et al. 2018).

3.2 LSTM Network Based Prediction Method

Time series data or a sequence of time series data is 

used as the input for the BiLSTM network. As shown in 

Fig. 3, this study configured the clock corrections received 

every two hours as one sequence. This means that a set of 

clock corrections with the same IOD is composed as one 

sequence. Normalization was performed for each sequence. 

We used the correction data received from the day before 

the prediction to the moment before updating the state for 

training, and the correction data received from updating 

the state to just before the prediction was used to update 

the time and the input/output state of the BiLSTM network. 

By updating the state, we can reflect the discontinuities 

caused by the last IOD change in the prediction period. 

When discontinuities occur in the prediction section, we can 

conduct the prediction by adding the difference between 

clock data of the received GPS broadcast ephemeris and the 

RTS clock correction to the prediction value. 

In terms of time series prediction, we can predict using 

the predicted value as the input for the next epoch, but the 

longer the prediction period, the more errors accumulate 

and result in larger errors. In this study, the BiLSTM model 

used the 18-step ahead prediction method, which predicts 

the correction value of the current epoch by using the clock 

correction received 3 minutes ago. Although this method 

uses more historical data as input, it is a stable way to make 

predictions without accumulating errors due to using actual 

measurements. Also, our test result showed that using more 

than 18 steps resulted in linear variations in the predicted 

corrections. The input x of the BiLSTM network consists of 

corrections received 3 minutes before output y. Eqs. (5) and 

(6) show one input/output sequence of the BiLSTM network. 

 1 2 18{ , , , }nx a a a −=    (5)

 19 20{ , , , }ny a a a=   (6)

where n is the total number of clock correction data in 

a sequence. The BiLSTM model was trained using the 

Adam algorithm, which is commonly used to optimize 

non-stationary time series data. Through the network 

optimization process, we set the learning rate to 0.001, the 

maximum iteration to 200, and the size of the minibatch to 1.

4. RESULTS

4.1 Prediction Result of RTS Clock Corrections

In this study, we predicted the clock corrections for 6 days 

using IGS03 data received from February 3-9, 2017. IGS03 

Fig. 2. Unfolded architecture of BiLSTM network.

Fig. 3. RTS clock corrections for LSTM training, state update, and prediction 
(PRN 25, February 3-4, 2017).
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is the RTS corrections combined by IGS, and it is suitable 

for the prediction method proposed in this paper because 

the latency is longer than the RTS corrections provided by 

each analysis center. IGS03 is also less volatile than the clock 

information of IGC01. Fig. 4 shows the results of predicting 

the clock corrections of PRN 25 satellites. The BiLSTM 

model shows similar results to the changes in the corrections 

that are actually received even with corrections received 3 

minutes ago, while the polynomial model shows a significant 

difference. The predictions of the optimized polynomial were 

in the opposite direction to the actual variations because the 

rate of change of the corrections appeared to be reversed 

before and after the point of prediction. The differences 

increased significantly over time because the random walk 

in the RTS clock corrections is difficult to model with a fifth-

order polynomial (Hadas & Bosy 2015).

Fig. 5 shows the prediction errors for all satellites. The 

BiLSTM model made predictions less than 5 cm for all of the 

satellites. Both models produced large errors in terms of PRN 

8 and 24 satellites because of the unstable cesium atomic 

clocks, thus resulting in larger changes in the corrections 

compared to other satellites (Nie et al. 2018). As a result of 

calculating the prediction errors for each type of satellite, 

excluding PRN 24 which had the largest error, the difference 

between the predicted RMS errors of Block-IIR and IIF 

satellites was only 0.004 m.

4.2 Result of Precise Point Positioning

After applying the clock corrections predicted by each 

model to the GPS navigation message, we performed PPP 

using gLAB. gLAB was developed by the technical university 

of Catalonia (UPC) and is widely used to analyze GNSS 

orbit accuracy and estimate positions. We used observation 

data received from the National Institute of Standards 

and Technology (NIST) stations because of its excellent 

clock stability and less influence from multipath. We used 

navigation messages received from NIST stations instead of 

BRDC (combined broadcast ephemeris) because the IOD 

at the transmission time was important when applying RTS 

corrections. We also used dual-frequency to eliminate the 

ionospheric error, limited the GPS elevation angle to 10° 

or higher, and performed wind-up and tidal corrections. 

After applying the received RTS orbit corrections to the GPS 

broadcast ephemeris, we estimated the position epoch by 

epoch.

Fig. 6 shows the horizontal position errors of each model 

after performing PPP, and Fig. 7 presents the vertical position 

errors. The polynomial model produced the largest horizontal 

and vertical position errors at the last point because the 

prediction errors increase according to the prediction period. 

The predictions were more affected in the vertical direction 

than in the horizontal direction because the clock corrections 

were in the same direction as the signal flight path. The 

BiLSTM model maintained an accuracy within 0.1 m, as in 

the case of RTS, but the polynomial model produced vertical 

errors up to 0.18 m. Since the large errors of the polynomial 

model in the prediction period affect tropospheric delay and 

integer ambiguity resolution, the errors were greater than 

RTS even after the prediction period.

Fig. 4. RTS clock corrections and prediction results for each model.
Fig. 6. Horizontal positioning error for each model.

Fig. 5. RTS clock prediction RMS errors for each satellite and model.
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Table 1 summarizes the results of calculating the position 

error statistics for each model for six days. The BiLSTM 

model showed a difference of less than 5 mm compared 

to RTS, with 59% and 67% smaller horizontal and vertical 

position errors than the polynomial model, respectively. As 

seen from Fig. 7, the polynomial model showed the largest 

errors in the last section of prediction. The BiLSTM model 

was able to maintain PPP performance similar to RTS even 

with corrections received 3 minutes ago.

5. CONCLUSIONS

RTS correction provided by IGS is used for real-time 

precise point positioning, but it may not be possible to 

receive this correction for a short time due to the Internet 

environment or hardware problems. Also, due to the time 

required to combine the data in the IGS, there may be a 

difference between the time the correction is sent and the 

current time. Short-term orbit predictions may be possible 

because the orbit correction data includes information 

related to the rate of change, but the clock correction data 

only provides a bias value, so a model for prediction is 

needed.

In this study, we predicted a clock correction of IGS03 

every three minutes for six days. When using BiLSTM 

network, the prediction showed 0.02 m accuracy. The 

polynomial model produced large prediction errors due 

to random walk of the RTS clock corrections. PPP was 

performed after applying the clock corrections predicted 

by the BiLSTM model to the broadcast ephemeris, and the 

average difference with the PPP accuracy of RTS was within 5 

mm. Even if the RTS clock data cannot be received for a short 

time, the RTS clock correction can be predicted based on the 

BiLSTM model to achieve an accuracy similar to the RTS.
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