• Title/Summary/Keyword: Short-Term

Search Result 6,081, Processing Time 0.037 seconds

Electroencephalography-based imagined speech recognition using deep long short-term memory network

  • Agarwal, Prabhakar;Kumar, Sandeep
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.672-685
    • /
    • 2022
  • This article proposes a subject-independent application of brain-computer interfacing (BCI). A 32-channel Electroencephalography (EEG) device is used to measure imagined speech (SI) of four words (sos, stop, medicine, washroom) and one phrase (come-here) across 13 subjects. A deep long short-term memory (LSTM) network has been adopted to recognize the above signals in seven EEG frequency bands individually in nine major regions of the brain. The results show a maximum accuracy of 73.56% and a network prediction time (NPT) of 0.14 s which are superior to other state-of-the-art techniques in the literature. Our analysis reveals that the alpha band can recognize SI better than other EEG frequencies. To reinforce our findings, the above work has been compared by models based on the gated recurrent unit (GRU), convolutional neural network (CNN), and six conventional classifiers. The results show that the LSTM model has 46.86% more average accuracy in the alpha band and 74.54% less average NPT than CNN. The maximum accuracy of GRU was 8.34% less than the LSTM network. Deep networks performed better than traditional classifiers.

Effect of mitigation strategies in the severe accident uncertainty analysis of the OPR1000 short-term station blackout accident

  • Wonjun Choi;Kwang-Il Ahn;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4534-4550
    • /
    • 2022
  • Integrated severe accident codes should be capable of simulating not only specific physical phenomena but also entire plant behaviors, and in a sufficiently fast time. However, significant uncertainty may exist owing to the numerous parametric models and interactions among the various phenomena. The primary objectives of this study are to present best-practice uncertainty and sensitivity analysis results regarding the evolutions of severe accidents (SAs) and fission product source terms and to determine the effects of mitigation measures on them, as expected during a short-term station blackout (STSBO) of a reference pressurized water reactor (optimized power reactor (OPR)1000). Three reference scenarios related to the STSBO accident are considered: one base and two mitigation scenarios, and the impacts of dedicated severe accident mitigation (SAM) actions on the results of interest are analyzed (such as flammable gas generation). The uncertainties are quantified based on a random set of Monte Carlo samples per case scenario. The relative importance values of the uncertain input parameters to the results of interest are quantitatively evaluated through a relevant sensitivity/importance analysis.

Optimize rainfall prediction utilize multivariate time series, seasonal adjustment and Stacked Long short term memory

  • Nguyen, Thi Huong;Kwon, Yoon Jeong;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.373-373
    • /
    • 2021
  • Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.

  • PDF

Study of the Fall Detection System Applying the Parameters Claculated from the 3-axis Acceleration Sensor to Long Short-term Memory (3축 가속 센서의 가공 파라미터를 장단기 메모리에 적용한 낙상감지 시스템 연구)

  • Jeong, Seung Su;Kim, Nam Ho;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.391-393
    • /
    • 2021
  • In this paper, we introduce a long short-term memory (LSTM)-based fall detection system using TensorFlow that can detect falls occurring in the elderly in daily living. 3-axis accelerometer data are aggregated for fall detection, and then three types of parameter are calculated. 4 types of activity of daily living (ADL) and 3 types of fall situation patterns are classified. The parameterized data applied to LSTM. Learning proceeds until the Loss value becomes 0.5 or less. The results are calculated for each parameter θ, SVM, and GSVM. The best result was GSVM, which showed Sensitivity 98.75%, Specificity 99.68%, and Accuracy 99.28%.

  • PDF

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

Servo control strategy for uni-axial shake tables using long short-term memory networks

  • Pei-Ching Chen;Kui-Xing Lai
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.359-369
    • /
    • 2023
  • Servo-motor driven uniaxial shake tables have been widely used for education and research purposes in earthquake engineering. These shake tables are mostly displacement-controlled by a digital proportional-integral-derivative (PID) controller; however, accurate reproduction of acceleration time histories is not guaranteed. In this study, a control strategy is proposed and verified for uniaxial shake tables driven by a servo-motor. This strategy incorporates a deep-learning algorithm named Long Short-Term Memory (LSTM) network into a displacement PID feedback controller. The LSTM controller is trained by using a large number of experimental data of a self-made servo-motor driven uniaxial shake table. After the training is completed, the LSTM controller is implemented for directly generating the command voltage for the servo motor to drive the shake table. Meanwhile, a displacement PID controller is tuned and implemented close to the LSTM controller to prevent the shake table from permanent drift. The control strategy is named the LSTM-PID control scheme. Experimental results demonstrate that the proposed LSTM-PID improves the acceleration tracking performance of the uniaxial shake table for both bare condition and loaded condition with a slender specimen.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

Short and long-term immune effects of Poly (I:C) in kidney of Olive flounder (Paralichthys olivaceus) (넙치(Paralichthys olivaceus) 신장에서 Poly (I:C)의 단기 및 장기적인 면역 효과)

  • Minjae Seong;Youngjin Park
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.123-132
    • /
    • 2024
  • Viral diseases cause enormous economic losses to the olive flounder (Paralichthys olivaceus) aquaculture industry in Korea. This study aimed to identify immune-related genes expressed in the kidney of olive flounder injected with Polyinosinic-polycytidylic acid (Poly (I:C)). Thirty fish were divided into two groups by intraperitoneal injection of 100µl of diethylpyrocarbonate-treated water or poly I:C per fish. Kidney tissues at day 3 and 30 after the injection were used for RNA-seq analysis to identify differentially expressed genes (DEGs). Poly I:C group upregulated il8, cfh, tnfaip2b, c3b.2, ly6d and cd38 genes at 3 days post-injection. Additionally, cd22, ccl34a.3, c9, cxcl19, ccl27a, ccl7, and cfh genes were upregulated at 30 days post-injection. Differential expression gene analysis showed that poly I:C has both short and long-term immune effects in olive flounder. This study provides a theoretical basis for understanding the molecular mechanism of the short and long-term immune effects of poly I:C.

Forecasting short-term transportation demand at Gangchon Station in Chuncheon-si using time series model (시계열모형을 활용한 춘천시 강촌역 단기수송수요 예측)

  • Chang-Young Jeon;Jia-Qi Liu;Hee-Won Yang
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2023
  • Purpose - This study attempted to predict short-term transportation demand using trains and getting off at Gangchon Station. Through this, we present numerical data necessary for future tourist inflow policies in the Gangchon area of Chuncheon and present related implications. Design/methodology/approach - This study collected and analyzed transportation demand data from Gangchon Station using the Gyeongchun Line and ITX-Cheongchun Train from January 2014 to August 2023. Winters exponential smoothing model and ARIMA model were used to reflect the trend and seasonality of the raw data. Findings - First, transportation demand using trains to get off at Gangchon Station in Chuncheon City is expected to show a continuous increase from 2020 until the forecast period is 2024. Second, the number of passengers getting off at Gangchon Station was found to be highest in May and October. Research implications or Originality - As transportation networks are improving nationwide and people's leisure culture is changing, the number of tourists visiting the Gangchon area in Chuncheon City is continuously decreasing. Therefore, in this study, a time series model was used to predict short-term transportation demand alighting at Gangchon Station. In order to calculate more accurate forecasts, we compared models to find an appropriate model and presented forecasts.

Estimation of tunnel boring machine penetration rate: Application of long-short-term memory and meta-heuristic optimization algorithms

  • Mengran Xu;Arsalan Mahmoodzadeh;Abdelkader Mabrouk;Hawkar Hashim Ibrahim;Yasser Alashker;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.27-41
    • /
    • 2024
  • Accurately estimating the performance of tunnel boring machines (TBMs) is crucial for mitigating the substantial financial risks and complexities associated with tunnel construction. Machine learning (ML) techniques have emerged as powerful tools for predicting non-linear time series data. In this research, six advanced meta-heuristic optimization algorithms based on long short-term memory (LSTM) networks were developed to predict TBM penetration rate (TBM-PR). The study utilized 1125 datasets, partitioned into 20% for testing, 70% for training, and 10% for validation, incorporating six key input parameters influencing TBM-PR. The performances of these LSTM-based models were rigorously compared using a suite of statistical evaluation metrics. The results underscored the profound impact of optimization algorithms on prediction accuracy. Among the models tested, the LSTM optimized by the particle swarm optimization (PSO) algorithm emerged as the most robust predictor of TBM-PR. Sensitivity analysis further revealed that the orientation of discontinuities, specifically the alpha angle (α), exerted the greatest influence on the model's predictions. This research is significant in that it addresses critical concerns of TBM manufacturers and operators, offering a reliable predictive tool adaptable to varying geological conditions.