References
- K. Khanna, A. Verma, and B. Richard, "The locked-in syndrome": Can it be unlocked?, J. Clin. Gerontol. Geriatr. 2 (2011), no. 4, 96-99. https://doi.org/10.1016/j.jcgg.2011.08.001
- P. Kant, S. H. Laskar, J. Hazarika, and R. Mahamune, CWT based transfer learning for motor imagery classification for brain computer interfaces, J. Neurosci. Methods 345 (2020), 108886. https://doi.org/10.1016/j.jneumeth.2020.108886
- P. Agarwal and S. Kumar, Transforming imagined thoughts into speech using a covariance-based subset selection method, Indian J. Pure Appl. Phys. 59 (2021), no. 3, 180-183.
- A. M. Choudhari, P. Porwal, V. Jonnalagedda, and F. Meriaudeau, An electrooculography based human machine interface for wheelchair control, Biocybern. Biomed. Eng. 39 (2019), no. 3, 673-685. https://doi.org/10.1016/j.bbe.2019.04.002
- M. Lee, J. Ryu, and D.-H. Kim, Automated epileptic seizure waveform detection method based on the feature of the mean slope of wavelet coefficient counts using a hidden Markov model and EEG signals, ETRI J. 42 (2020), no. 2, 217-229. https://doi.org/10.4218/etrij.2018-0118
- O. Ozdenizci, Y. Wang, T. Koike-Akino, and D. Erdogmus,, Adversarial deep learning in EEG biometrics, IEEE Signal Process. Lett. 26 (2019), no. 5, 710-714. https://doi.org/10.1109/lsp.2019.2906826
- W. He, Y. Zhao, H. Tang, C. Sun, and W. Fu, A wireless BCI and BMI system for wearable robots, IEEE Trans. Syst. Man Cybern. Syst. 46 (2016), no. 7, 936-946. https://doi.org/10.1109/TSMC.2015.2506618
- J. Hazarika, P. Kant, R. Dasgupta, and S. H. Laskar, Neural modulation in action video game players during inhibitory control function: An EEG study using discrete wavelet transform, Biomed. Signal Process Control. 45 (2018), 144-150. https://doi.org/10.1016/j.bspc.2018.05.023
- S. Kumar, Real-time implementation and performance evaluation of speech classifiers in speech analysis-synthesis, ETRI J. 43 (2021), no. 1, 82-94. https://doi.org/10.4218/etrij.2019-0364
- A. Khosla, P. Khandnor, and T. Chand, A comparative analysis of signal processing and classification methods for different applications based on EEG signals, Biocybern. Biomed. Eng. 40 (2020), no. 2, 649-690. https://doi.org/10.1016/j.bbe.2020.02.002
- R. A. Ramadan and A. V. Vasilakos, Brain computer interface: Control signals review, Neurocomputing. 223 (2017), 26-44. https://doi.org/10.1016/j.neucom.2016.10.024
- T. K. Reddy, V. Arora, and L. Behera, HJB-equation-based optimal learning scheme for neural networks with applications in brain-computer interface, IEEE Trans. Emerg. Top. Comput. Intell. 4 (2020), no. 2, 159-170. https://doi.org/10.1109/tetci.2018.2858761
- C. Ju, D. Gao, R. Mane, B. Tan, Y. Liu, C. Guan, Federated transfer learning for EEG signal classification, (Proc. 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society, Montreal, QC, Canada), 2020, pp. 3040-3045.
- K.-H. Kim, H. K. Kim, J. S. Kim, W. Son, and S. Y. Lee, A biosignal-based human interface controlling a power-wheelchair for people with motor disabilities, ETRI J. 28 (2006), no. 1, 111-114. https://doi.org/10.4218/etrij.06.0205.0069
- P. Kaushik, A. Gupta, P. P. Roy, and D. P. Dogra, EEG-based age and gender prediction using deep BLSTM-LSTM network model, IEEE Sens. J. 19 (2019), no. 7, 2634-2641. https://doi.org/10.1109/jsen.2018.2885582
- S. Martin, P. Brunner, I. Iturrate, J. R. Millan, G. Schalk, R. T. Knight, and B. N. Pasley, Word pair classification during imagined speech using direct brain recordings, Sci. Rep. 6 (2016), 25803. https://doi.org/10.1038/srep25803
- M. D'Zamura, S. Deng, T. Lappas, S. Thorpe, and R. Srinivasan, Toward EEG sensing of imagined speech, In Human-computer interaction. New trends, J. A. Jacko (ed.) Vol. 5610, Springer, Berlin, Heidelberg, 2009, 40-48.
- K. Brigham and B. V. K. V. Kumar, Imagined speech classification with EEG signals for silent communication: A preliminary investigation into synthetic telepathy, (Proc. 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China), 2010, pp. 1-4.
- C. H. Nguyen, G. K. Karavas, and P. Artemiadis, Inferring imagined speech using EEG signals: A new approach using Riemannian manifold features, J. Neural Eng. 15 (2017), no. 1, 016002. https://doi.org/10.1088/1741-2552/15/1/016002
- P. Agarwal, R. K. Kale, M. Kumar, S. Kumar, Silent speech classification based upon various feature extraction methods, (Proc. Int. Conf. Signal Processing and Integrated Networks, Noida, India), 2020, pp. 16-20.
- P. Kumar, R. Saini, P. P. Roy, P. K. Sahu, and D. P. Dogra, Envisioned speech recognition using EEG sensors, Pers. Ubiquitous Comput. 22 (2018), 185-199. https://doi.org/10.1007/s00779-017-1083-4
- M. N. I. Qureshi, B. Min, H. J. Park, D. Cho, W. Choi, and B. Lee, Multiclass classification of word imagination speech with hybrid connectivity features, IEEE Trans. Biomed. Eng. 65 (2018), no. 10, 2168-2177. https://doi.org/10.1109/TBME.2017.2786251
- E. T. Esfahani and V. Sundararajan, Classification of primitive shapes using brain-computer interfaces, Comput. Aided Des. 44 (2012), no. 10, 1011-1019. https://doi.org/10.1016/j.cad.2011.04.008
- S. Kellis, K. Miller, K. Thomson, R. Brown, P. House, and B. Greger, Decoding spoken words using local field potentials recorded from the cortical surface, J. Neural Eng. 7 (2010), no. 5, 056007. https://doi.org/10.1088/1741-2560/7/5/056007
- A. A. Torres-Garcia, C. A. Reyes-Garcia, L. Villasenor-Pineda, and G. Garcia-Aguilar, Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification, Expert Syst. Appl. 59 (2016), 1-12. https://doi.org/10.1016/j.eswa.2016.04.011
- E. F. Gonzalez-Castaneda, A. A. Torres-Garcia, C. A. Reyes-Garcia, and L. Villasenor-Pineda, Sonification and textification: Proposing methods for classifying unspoken words from EEG signals, Biomed. Signal Process Control. 37 (2017), 82-91. https://doi.org/10.1016/j.bspc.2016.10.012
- D. Pawar and S. Dhage, Multiclass covert speech classification using extreme learning machine, Biomed. Eng. Lett. 10 (2020), 217-226. https://doi.org/10.1007/s13534-020-00152-x
- C. S. Dasalla, H. Kambara, M. Sato, and Y. Koike, Single-trial classification of vowel speech imagery using common spatial patterns, Neural Netw. 22 (2009), no. 9, 1334-1339. https://doi.org/10.1016/j.neunet.2009.05.008
- C. Cooney, A. Korik, R. Folli, D. Coyle, Classification of imagined spoken word-pairs using convolutional neural networks, (Proc. Int. Conf. The 8th Graz Brain Computer Interface, Verlag der Technischen Universitat, Graz), 2019, pp. 338-343.
- D. Dash, P. Ferrari, and J. Wang, Decoding imagined and spoken phrases from non-invasive neural (MEG) signals, Front. Neurosci. 14 (2020), 290. https://doi.org/10.3389/fnins.2020.00290
- M.-O. Tamm, Y. Muhammad, and N. Muhammad, Classification of vowels from imagined speech with convolutional neural networks, Comput. 9 (2020), no. 2, 46. https://doi.org/10.3390/computers9020046
- P. Saha and S. Fels, Hierarchical deep feature learning for decoding imagined speech from EEG, (Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HA, USA) pp. 10019-10020.
- P. Saha, S. Fels, and M. Abdul-Mageed, Deep learning the EEG manifold for phonological categorization from active thoughts, (Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Brighton, UK), 2019, pp. 2762-2766.
- A. Porbadnigk, M. Wester, JP. Calliess, and T. Schultz, EEG-based speech recognition- impact of temporal effects, (Proc. International Conference on Bio-inspired Systems and Signal Processing - BIOSIGNALS, Porto, Portugal), 2009, pp. 376-381.
- L. Marple, Computing the discrete-time "analytic" signal via FFT, IEEE Trans. Signal Process. 47 (1999), no. 9, 2600-2603. https://doi.org/10.1109/78.782222
- P. Agarwal and S. Kumar, Electroencephalography based imagined alphabets classification using spatial and time-domain features, Int. J. Imaging Syst. Technol. 32 (2022), no. 1, 111-122. https://doi.org/10.1002/ima.22655
- G. H. Klem, H. O. Luders, H. H. Jasper, and C. Elger, The tentwenty electrode system of the international federation. The international federation of clinical neurophysiology, Electroencephalogr. Clin. Neurophysiol. 52 (1999), 3-6.
- S. Siuly, Y. Li, and Y. Zhang, EEG signal analysis and classification: Techniques and applications, Springer, Cham, Switzerland, 2016.
- S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Comput. 9 (1997), no. 8, 1735-1789. https://doi.org/10.1162/neco.1997.9.8.1735
- X. Glorot, and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, (Proc. 13th International Conference on Artificial Intelligence and Statistics. Chia Laguna Resort, Sardinia, Italy), 2010, pp. 249-256.
- A. M. Saxe, J. L. McClelland, and S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear neural networks, ArXiv preprint, 2013. https://doi.oprg/10.48550/arXiv.1312.6120
- J. M. Lilly and S. C. Olhede, Generalized Morse wavelets as a superfamily of analytic wavelets, IEEE Trans. Signal Process. 60 (2012), no. 11, 6036-6041. https://doi.org/10.1109/TSP.2012.2210890
- S. Zhao, and F. Rudzicz, Classifying phonological categories in imagined and articulated speech, (Proc. IEEE International Conference on Acoustics, Speech and Signal Processing. South Brisbane, Australia), 2015, pp. 992-996. https://doi.org/10.1109/ICASSP.2015.7178118
- S. Wellington, and J. Clayton, Fourteen-channel EEG with Imagined Speech (FEIS) dataset, v1.0, University of Edinburgh, Edinburgh, UK, 2019. https://doi.org/10.5281/zenodo.3554128
- S. Kumar, P. R. Verma, M. Bharti, and P. Agarwal, A CNN based graphical user interface controlled by imagined movements, Int. J. Syst. Assur. Eng. Manag. (2021). https://doi.org/10.1007/s13198-021-01096-w