• Title/Summary/Keyword: Short circuit (SC)

Search Result 121, Processing Time 0.024 seconds

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon;Yoon, Soon-Gil;Sekhon, S.S.;Kang, Man-Gu;Han, Chi-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3629-3633
    • /
    • 2011
  • The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

The Photovoltaic Properties & Fabrication of $n^{+}$-p InP Homojunction Diodes ($n^{+}$-p InP 동종접합 다이오드의 제작과 광기전력 특성)

  • 최준영;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.110-113
    • /
    • 1992
  • $n^{+}$-p homojunction InP diodes were fabricated using thermal diffusion of Sulfur into p-type InP substrates(Zn doped, LEC grown, p=2.3${\times}$10$^{16}$c $m^{-3}$). The Sulfur diffusion was carried out at 550$^{\circ}C$, 600$^{\circ}C$, 700$^{\circ}C$ for 4 hours in a sealed quartz ampule(~2ml in volume) containing 5mg I $n_2$ $S_3$ and Img of red phosphorus. The formed junction depth was below 0.5$\mu\textrm{m}$. After the removal of diffused layer on the rear surface of the wafer, the beak ohmic contacts to the p-side were made with a vacuum evaporation of An-Zn(2%) followed by an annealing at 450$^{\circ}C$ for 5 minutes in flowing Ar gas. The front contacts were made with a vacuum evaporation of Au-Ge(12%) followed by an annealing at 500$^{\circ}C$ for 3 minutes in flowing Ar gas. The remarkable sprctral response of the cells obtained at the region of 6000-8000${\AA}$ region. The open circuit voltage $V_{oc}$ , short circuit current density $J_{sc}$ , fill factor and conversion efficiency η of the fabricated pattern solar cells(diffusion condition : at 700$^{\circ}C$ for 4 hours) were 0.660V, 14.04㎃/$\textrm{cm}^2$, 0.6536 and 10.09%, respectively.y.

  • PDF

Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy (Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석)

  • Heo, Jinhee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

Effect of Annealing Process Pressure Over Atmospheric Pressure on Cu2ZnSn(S,Se)4 Thin Film Growth (대기압 이상의 열처리 공정압력이 Cu2ZnSn(S,Se)4(CZTSSe) 박막 성장에 미치는 영향)

  • Lee, Byeong Hoon;Yoo, Hyesun;Jang, Jun Sung;Lee, InJae;Kim, Jihun;Jo, Eunae;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.553-558
    • /
    • 2019
  • $Cu_2ZnSn(S,Se)_4(CZTSSe)$ thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic $H_2Se$ and/or $H_2S$ gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage($V_{OC}$) and $36.98mA/cm^2$ for short circuit current density($J_{SC}$), under a highest process pressure of 800 Torr.

Bandgap Engineering in CZTSSe Thin Films via Controlling S/(S+Se) Ratio

  • Vijay C. Karade;Jun Sung Jang;Kuldeep Singh, Gour;Yeonwoo Park;Hyeonwook, Park;Jin Hyeok Kim;Jae Ho Yun
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • The earth-abundant element-based Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells (TFSCs) have attracted greater attention in the photovoltaic (PV) community due to their rapid development in device power conversion efficiency (PCE) >13%. In the present work, we demonstrated the fine-tuning of the bandgap in the CZTSSe TFSCs by altering the sulfur (S) to the selenium (Se) chalcogenide ratio. To achieve this, the CZTSSe absorber layers are fabricated with different S/(S+Se) ratios from 0.02 to 0.08 of their weight percentage. Further compositional, morphological, and optoelectronic properties are studied using various characterization techniques. It is observed that the change in the S/(S+Se) ratios has minimal impact on the overall Cu/(Zn+Sn) composition ratio. In contrast, the S and Se content within the CZTSSe absorber layer gets altered with a change in the S/(S+Se) ratio. It also influences the overall absorber quality and gets worse at higher S/(S+Se). Furthermore, the device performance evaluated for similar CZTSSe TFSCs showed a linear increase and decrease in the open circuit voltage (Voc) and short circuit current density (Jsc) of the device with an increasing S/(S+Se) ratio. The external quantum efficiency (EQE) measured also exhibited a linear blue shift in absorption edge, increasing the bandgap from 1.056 eV to 1.228 eV, respectively.

Calculation of Induced Current in the Human Body around 765 kV Transmission Lines (765 kV 초고압 송전선 주변의 인체 유도전류 계산)

  • 명성호;이재복;허창수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.802-812
    • /
    • 1998
  • Safety related to electric field exposure for the personnel of high voltage power plant and substation is of importance. To analyze the induced current influencing on human body in this paper, we calculate directly capacitance in three dimension which is complex and time consuming, as not to separate the voltage source and the induced object using a effective modeling technique. The proposed algorithm in this paper has been applied to 765 kV high voltage transmission line to evaluate human hazard for the induced current through the case study. As the results, the short circuit current of human body has been identified in the range of 0.3 mA to 6.8 mA. Closing to transmission line, this range of short current can exceed 5 mA that ANSI recommended let-go current. Therefore, it is necessary to countermeasure such as putting on conductive clothing in live-line maintenance of transmission line.

  • PDF

A New Switching Strategy for PWM Voltage Source Inverters (PWM 전압원 인버터의 새로운 스위칭 방법)

  • Jo, Gyu-Min;Gang, Wan-Sik;Kim, Nam-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.84-93
    • /
    • 2000
  • In PWM voltage source inverters operated by conventional switching method, the dead time is inserted in switching signals to prevent tile short circuit of the DC voltage source. The dead time causes detrimental effects to the control performance of the inverter system. So we need to compensate the dead time effects. And the dead time minimization switching method can be considered as the best way to avoid the dead time effects fundamentally. In this paper, a new switching strategy is proposed which is a kind of dead time minimization switching methods. According to the proposed switching method, very short dead time is adopted in only once when the current polarity is changing. And the adopted dead time is equal to the turn off time of the swtiching device or shorter than it. As the proposed method can be done with the polarity information of the reference current in case that the output current of the inverter is controlled, it is easy to solve some problems in comparison with the case that the real current is used to get the polarity changing time; level detection difficulty, noise problem and so on

  • PDF

Nanotexturing and Post-Etching for Diamond Wire Sawn Multicrystalline Silicon Solar Cell (다이아몬드 와이어에 의해 절단된 다결정 실리콘 태양전지의 나노텍스쳐링 및 후속 식각 연구)

  • Kim, Myeong-Hyun;Song, Jae-Won;Nam, Yoon-Ho;Kim, Dong-Hyung;Yu, Si-Young;Moon, Hwan-Gyun;Yoo, Bong-Young;Lee, Jung-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.301-306
    • /
    • 2016
  • The effects of nanotexturing and post-etching on the reflection and quantum efficiency properties of diamond wire sawn (DWS) multicrystalline silicon (mc-Si) solar cell have been investigated. The chemical solutions, which are acidic etching solution (HF-$HNO_3$), metal assisted chemical etching (MAC etch) solutions ($AgNO_3$-HF-DI, HF-$H_2O_2$-DI) and post-etching solution (diluted KOH at $80^{\circ}C$), were used for micro- and nano-texturing at the surface of diamond wire sawn (DWS) mc-Si wafer. Experiments were performed with various post-etching time conditions in order to determine the optimized etching condition for solar cell. The reflectance of mc-Si wafer texturing with acidic etching solution showed a very high reflectance value of about 30% (w/o anti-reflection coating), which indicates the insufficient light absorption for solar cell. The formation of nano-texture on the surface of mc-Si contributed to the enhancement of light absorption. Also, post-etching time condition of 240 s was found adequate to the nano-texturing of mc-Si due to its high external quantum efficiency of about 30% at short wavelengths and high short circuit current density ($J_{sc}$) of $35.4mA/cm^2$.

Performance Characteristics of p-i-n type Organic Thin-film Photovoltaic Cell with Rubrene:CuPc Hole Transport Layer (Rubrene:CuPc 정공 수송층이 도입된 p-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Kang, Hak-su;Hwang, Jongwon;Kang, Yongsu;Lee, Hyehyun;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.654-659
    • /
    • 2010
  • We have investigated the effect of rubrene-doped CuPc hole transport layer on the performance of p-i-n type bulk hetero-junction photovoltaic device with a structure of ITO/PEDOT:PSS/CuPc: rubrene/CuPc:C60(blending ratio 1:1)/C60/BCP/Al and have evaluated the current density-voltage(J-V) characteristics, short-circuit current($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and energy conversion efficiency(${\eta}_e$) of the device. By rubrene doping into CuPc hole transport layer, absorption intensity in absorption spectra decreased. However, the performance of p-i-n organic type bulk hetero-junction photovoltaic device fabricated with crystalline rubrene-doped CuPc was improved since rubrene shows higher bandgap and hole mobility compared to CuPc. Increased injection currents have effected on the performance improvement of the present device with energy conversion efficiency(${\eta}_e$) of 1.41%, which is still lower value compared to silicone solar cell and many efforts should be made to improve organic photovoltaic devices.

Impact of Absorber Thickness on Bifacial Performance Characteristics of Semitransparent Amorphous Silicon Thin-Film Solar Cells (광흡수층 두께에 따른 투광형 비정질 실리콘 박막 태양전지의 양면발전 성능특성)

  • Seo, Yeong Hun;Lee, Ahruem;Shin, Min Jeong;Cho, Ara;Ahn, Seungkyu;Park, Joo Hyung;Yoo, Jinsu;Choi, Bo-Hun;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.97-102
    • /
    • 2019
  • Bifacial and semitransparent hydrogenated amorphous silicon (a-Si:H) thin-film solar cells in p-i-n configuration were prepared with front and rear transparent conducting oxide (TCO) electrodes using plasma-enhanced chemical vapor deposition method. Fluorine-doped tin oxide and tin-doped indium oxide films were used as front and rear TCO contacts, respectively. Film thickness of intrinsic a-Si:H absorber layers were controlled from 150 nm to 450 nm by changing deposition time. The dependence of performance characteristics of solar cells on the front and rear illumination direction were investigated. For front illumination, gradual increase in the short-circuit current density (JSC) from 10.59 mA/㎠ to 14.19 mA/㎠ was obtained, whereas slight decreases from 0.83 V to 0.81 V for the open-circuit voltage (VOC) and from 68.43% to 65.75% for fill factor (FF) were observed. The average optical transmittance in the wavelength region of 380 ~ 780 nm of the solar cells decreased gradually from 22.76% to 15.67% as the absorber thickness was changed from 150 nm to 450 nm. In case of the solar cells under rear illumination condition, the JSC increased from 10.81 to 12.64 mA/㎠ and the FF deceased from 66.63% to 61.85%, while the VOC values were maintained at 0.80 V with increasing the absorber thickness from 150 nm to 450 nm. By optimizing the deposition parameters, a high-quality bifacial and semitransparent a-Si:H solar cell with 350 nm-thick i-a-Si:H absorber layer exhibited the conversion efficiencies of 7.69% for front illumination and 6.40% for rear illumination, and average visible optical transmittance of 17.20%.