• Title/Summary/Keyword: Short Fault

Search Result 532, Processing Time 0.028 seconds

Parameter Design Using Probabilistic Methodology For Resistive HTS- FCL

  • Yoon, Jae-Young;Kim, Jong-Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.26-29
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO system is much higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. As the superconductivity technology has developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. But the parameters of HTS-FCL should be designed optimally to have the best performance. Under this background, this paper presents the optimal design method of parameters for resistive type HTS-FCL using Monte Carlo technique.

Loop Selective Direction Measurement for Distance Protection

  • Steynberg, Gustav;Koch, Geyhard
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.423-426
    • /
    • 2006
  • Distance relays achieve selective tripping by measurement of all short circuit fault conditions inside set reaches. The direction of the fault, forward or reverse is commonly determined with a dedicated measurement to ensure selectivity under all conditions. For the direction decision (measurement) a number of alternatives are available. This paper describes a loop selective direction measurement and illustrates by means of a typical fault why this is superior to a non loop selective direction measurement such as that based on negative sequence quantities.

Minimization of Rising and Falling Times of A Boost Type Converter Output Voltage in Pulsed Mode Operation

  • Nho Eui-Cheol;Kim In-Dong;Joe Cheol-Je;Chun Tae-Won;Kim Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper describes an improved short-circuit protection method with a boost type rectifier using a multilevel ac/dc power converter. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. Once the fault has been cleared the dc power is reapplied to the load. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the dc voltage because the dc output capacitors hold undischarged state. The converter, which employs the proposed method, has the characteristics of a simplified structure, reduced cost, weight, and volume compared with a conventional power supply, which has frequent output short-circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

A study on the detection of poor contact and arcing fault using a fuzzy logic (퍼지논리를 적용한 전기적 접촉불량 및 아크 검출에 관한 연구)

  • Kim, Hyun-Woo;Kim, In-Tae
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.205-210
    • /
    • 2007
  • This study on the prevention of electric fire. Generally the electric fire is caused by break or disconnection of the power line, short circuit and poor contact, arcing fault ect. In these causes, this paper is studied on the detection of poor contact and arcing fault. The arcing fault is caused by poor contact mainly. The arcing fault can occurs a electric fire by interaction of flammable gas and materials and it can be caused of tracking and carbonization. These phenomenons is also caused of electric fire. Therefore this paper is studied on the detection of arcing fault and poor contact.

  • PDF

A Study on the Reliability of Superconducting Fault Current Limiter (초전도한류기의 신뢰도에 관한 연구)

  • Bae, In-Su;Kim, Sung-Yul;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.101-106
    • /
    • 2011
  • The failure of cooling system in Superconducting Fault Current Limiter(SFCL) increases the impedance of superconducting device, and due to malfunction of inner switches the SFCL opens the distribution system inadvertently when required to do so. In this paper, the ground fault and short circuit fault were classified as active failure and the open circuit fault was passive failure. A reliability model of SFCL considers the passive failure as well as active failure, and in the case study the reliability indices of distribution system are evaluated. It is possible that the reliability evaluation excluded passive failure makes the customers reliability seem so worse than it really was. Therefore, the reliability models of SFCL must include the active failure and passive failure together to evaluate the reliability of distribution system connected SFCL.

Design Method for HTS Wire Length of the Small Scale Resistive Type Superconducting Fault Current Limiter Considering System Resistance (계통 저항을 고려한 소용량 저항형 한류기의 초전도 선재 소모 길이 산출 연구)

  • Lee, W.S.;Choi, S.J.;Jang, J.Y.;Hwang, Y.J.;Kang, J.S.;Yang, D.G.;Lee, H.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.14-18
    • /
    • 2011
  • Electrical system is changing to smart grid which includes the distributed generations with reusable energy sources in these days. The distributed generations are environmentally friendly and have no concern with depletion problem. But dispatching distributed generations can cause an increase of the fault current. Resistive type super conducting fault current limiter is one of the candidates of solution for the large fault problem in smart grid. In this paper, a design method for the wire length of fault current limiter and the result of short circuit test for small scale modules considering system resistance are introduced.

Development of EMTDC model for Resistance type Fault Current Limiter considering transient characteristic (저항형초전도한류기 과도특성을 고려한 EMTDC 모델개발)

  • 윤재영;김종율;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO(Korea Electric Power Co-Operation) system is the more higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(High Voltage Direct Current-Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor -Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC(Electro-Magnetic Transient Direct Current) model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching phenomena occur.

Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic (퀸칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.73-79
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.

Analysis of Feeder wire fault Scenario on AC Railway Feeding System considering Train Position (전차 위치를 고려한 교류 전기철도 급전계통의 급전선 고장 시나리오 해석)

  • Huh, Seunghoon;Cho, Gyujung;Ryu, Kyusang;Lee, Hundo;Kim, Chulhwan;Min, Myunghwan;An, Taepung;Kwon, Seongil
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.272-273
    • /
    • 2015
  • This paper analyze scenario of feeder wire fault that occurs in the AC feeding system considering train position. The fault location of AC feeding system is calculated by measuring impedance. However, in this way, estimation error can be occurred because of tie connection, boosting current, etc. Therefore, it's hard to find fault location, so that it is required to detailed circuit analysis according to fault location. We analyze the short circuit impedance values with respect to feeder wire fault according to a train position. In this paper, PSCAD is used for modeling and analysis of AC railway feeding system.

  • PDF

R-type HTS-FCL Model considering transient characteristics

  • Yoon Jae Young;Lee Seung Ryul;Kim Jong Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.35-38
    • /
    • 2005
  • One of the most serious problems in KEPCO system operation is higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the resistance type HTS-FCL(High Temperature Superconductor Fault Current Limiter) can be one of the most attractive alternatives to solve the fault current problem. To evaluate the accurate transient performance of resistance type HTS-FCL, it is needed that the dynamic simulation model considering transient characteristics during quenching and recovery state. Under this background, this paper presents the EMTDC model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching and recovery phenomena by fault current injection and clearing occurs.