The purposes of this study were to investigate demographic profiles between the consumer group under high time pressure(HTP) and the group under low time pressure(LTP) during the shopping, to examine the level of association between the fashion information sources and time pressure variable, to determine the difference in clothing benefits sought between HTP and LTP, and to determine the difference in purchase criteria. We distributed questionnaires to 600 women aged in 20-65. The reliable 562 questionnaires were used for a statistical analysis. Data analyses were conducted with SPSS program on t-test, cluster analysis, factor analysis, and Chi square test. We obtained the following results: There was a significant association between demographic variables such as age, occupation, education, residence area, & family cycle and time pressure variable. Fashion information sources were classified into 4 factors. HTP searched information on fashion products using more various sources than LTP did. There was also a significant difference between HTP and LTP in clothing benefit sought. Four clothing benefit factors such as trendy/social position, economic value, protection/comfort, and makeup of body shape were sought more by HTP than by LTP. In addition, HTP considered significantly more purchase criteria such as color/pattern, comfort, quality, suitability, material, sewing finishing, coordination, price, brand, easy care, and country of origin than LTP.
연관규칙 탐사는 지지도와 신뢰도를 바탕으로 연관성 있는 강한 항목들을 탐사한다. 탐사된 연관규칙은 장바구니 분석 등과 같이 전자 상거래 및 대형 소매점 등의 판매 패턴에 대한 분석에 유용하게 적용될 수 있다. 이와 같은 연관규칙 탐사는 대규모로 축적되어 트랜잭션 데이터를 대상으로 하는 기법으로서 대규모 데이터에 대한 반복적 스캔연산을 수반한다. 그러므로 매우 높은 연산 부하를 안고 있으며 이로 인해 동적 환경에서 실시간 제한사항을 탐사에 대한 시도를 하지 못하고 있다. 따라서 이 논문에서는 연관규칙 탐사의 비 실시간적 제한사항을 위하여 트리거와 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제안하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제한하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 연산의 구현 모델을 제시하고 이의 구현 및 실험을 통해 성능 특성을 분석하였다.
최근 마케팅이나 기업전략 분야에서 고객관리 및 점포관리 등의 업무를 위하여 GIS 기법을 적용한 다양한 응용시스템이 개발되고 있다. 그러나 기존의 시스템들은 대부분 개별점포나 고객 담당자의 경험치를 이용하여 이루어져 왔으며, 특정업종이나 특정 고객들에 대한 객관적인 분석시스템이 제시되지 않았다. 따라서 본 연구에서는 GIS 기법뿐만 아니라 시공간 데이터마이닝 기법을 적용한 gCRMs을 개발하였다. 본 시스템은 상권추출을 위한 새로운 시공간 데이터마이닝 기법을 개발하여 다양한 GIS 응용S/W의 개발이 가능하며, 상권에서 추출된 특성정보와 상권에서 발생하는 매출 등을 정성적, 정량적으로 평가할 수 있으며, 더 많은 다양한 지역에 적용하기 위한 일반화 기술의 원천기술을 획득하여 향후 기술을 이용한 각종 마케팅이 가능하다. 또한 도지시역의 변화를 예측하는 것과 같은 시계열분석 등의 모델링 툴을 개발하는 기초적인 기술을 제공할 수 있다.
유비쿼터스 컴퓨팅에서 대부분의 시스템들이 개인화된 추천을 위하여 사용자와 성향이 비슷한 사람들의 컨텍스트 정보를 분석하는데 인구통계학적 방법이나 협력적 필터링을 주로 사용한다. 서비스 추천 시스템들은 컨텍스트 정보 중에서 성별, 나이, 직업, 구매이력 등의 정적 컨텍스트를 주로 사용하고 있다. 그러나 이러한 시스템은 이동경로 같은 사용자의 상황을 고려하기가 어렵기 때문에 개인의 성향을 정확하게 분석하여 실시간으로 개인화된 추천 서비스를 제공하는데 한계가 있다. 본 논문에서는 사용자의 상황을 고려하기 위해 동적 컨텍스트 중에서 사용자의 이동경로를 이용한다. 이동경로의 예측 정확도를 높이기 위해 RSOM의 입력으로 들어가는 이동경로를 경로보정 알고리즘을 사용하여 보정한다. 그리고 보정된 경로를 RSOM으로 학습시켜 사용자의 이동패턴을 분석하고 향후 이동경로를 예측한 후, 사용자의 선호도가 높은 상품들 중에서 예측 경로 상에 있는 가장 가까운 상품을 실시간으로 추천한다. 제안한 방법의 예측 정확도를 측정한 결과 MAE가 평균 0.5 이하로 측정됨으로써 사용자의 이동경로를 올바르게 예측할 수 있음을 확인하였다.
The purpose of this study was to survey the distribution patterns of volatile organic compounds(VOCs) and formaldehyde in the various indoor environments using cluster analysis. We investigated VOCs and formaldehyde in subway stations, underground shopping areas, medical centers, maternity recuperation centers, public childcare centers, large stores, funeral houses, and indoor parking lots from June,2005 to May,2006. Concentration of TVOCs in maternity recuperations was 2,605.7 ${\mu}g/m^3$ that was higher than the guideline and other facilities. TVOCs in public childcare centers was 1,951.6 ${\mu}g/m^3$ also it exceeded the guideline. Moreover, concentration of TVOCs in every facility exceeded the guideline of Department of Environment, Korea. In case of formaldehyde, mean concentration, 336.5 ${\mu}g/m^3$, in only public childcare centers exceeded the 120 ${\mu}g/m^3$ of the guideline. Finally, by applying cluster analysis, three pattterns of the indoor air pollutions were distinguished. In the results of analysis, concentrations of TVOCs and formaldehyde of cluster 3 were higher than cluster 1 and 2 that were 2,561.4 ${\mu}g/m^3$ and 184.9 ${\mu}g/m^3$, respectively.
온라인 쇼핑 시장이 성장하는 가운데 소비자의 구매 프로세스는 온 오프라인의 경계 없이 복잡해졌고, 지능적인 맞춤형 서비스를 원하는 스마트 컨슈머가 등장하였다. 변화하는 소비자 및 소비 환경에 따라 각 관련 분야의 기업들은 다양한 옴니채널과 O2O 서비스를 제공하고 있으나 패션업계에서의 대응은 많이 늦은 편이다. 그리고 최근에 사물인터넷 환경도 표준화 기반 오픈 플렛폼으로 변화하고 있으며 사물의 유형에 따른 지능적인 서비스의 다양화가 요구되고 있다. 본 논문 에서는 패션업계에 적합한 스마트 피팅 디스플레이를 활용한 패션 O2O 시스템을 제안한다. 제안하는 시스템은 오프라인 매장에서 사용자가 수행한 피팅에 관한 정보를 데이터베이스화하여 사용자에게 제공하며 오프라인에서 수행한 사용자의 활동들을 온라인에서도 지원함으로써, 사용자의 구매활동을 지속적으로 유지, 관리할 수 있도록 한다. 아울러, 매장관리시스템 및 배송시스템의 정보 연계를 통해 고객 중심의 지능적인 피팅 서비스가 가능할 것으로 기대한다.
최근의 프록시 서버에서 사용자 인증에 의한 접근제어를 위해서는 각 사용자 브라우저마다 프록시 서버 설정을 해주어야만 하는 불편함이 있다. 본 논문에서 구현한 투명캐시에서의 사용자 인증 기술은 간단히 캐시서버 상에 인증기능 옵션을 설정함으로써 모든 사용자에게는 투명하게 인터넷을 사용할 수 있도록 하였다. 또한 관리자 측면에서는 각 사용자의 트래픽을 감시하고 보안성을 한층 강화하는 효과를 보인다. 그리고 사용자의 인터넷 사용습관을 모니터링 할 수 있어 쇼핑몰과 같은 전자상거래 분야에서 사용자의 성향에 따른 인터넷 전자 고객관계관리(eCRM) 서비스에 활용할 수 있을 것으로 기대된다 단 기술은 별도로 보안장비의 추가설치 없이 보안이 필수적인 기업 부설 연구소, 전자상거래 웹사이트, 군부대의 인터넷 환경 등에서도 적용할 수 있는 기술이라 하겠다.
Objectives: This study's purpose is finding children's activity spaces that demand environmental safety management. Methods: The method of this study is analysing children's life patterns based on a questionnaire survey. Results: This study analyzed children's life patterns through a questionnaire survey. In total, 2,447 questionnaires were provided to analyze children's life patterns. The results of the questionnaire indicated a highly simple form because many children generally stayed in their home (66%) or nursery facility (2%). In the case of other facilities, playground was ranked first and amusement park was ranked second. In addition, kids cafe (including play facilities installed in shopping centers, etc.), library, and internet cafe were among the responses. Conclusions: The priority for new high-maintenance children's activity spaces are academy (rank 1), kids cafe (rank 2), indoor playground (rank 3).
본 논문은 농식품 소비자패널 데이터에서 소비자의 유형을 나눌 때에 변수간 연관성이 많은 장바구니 분석에서 전처리 방법과 차원축소의 방법을 제안한다. 군집분석은 다변량 자료에서 관측 개체를 몇 개의 군집으로 나눌 때 널리 사용되는 분석기법이다. 하지만 여러 개의 변수가 연관성을 가진 경우에는 차원축소를 통한 군집분석이 더 효과적일 수 있다. 본 논문은 1,987 가구를 대상으로 조사한 식품소비 데이터를 K-means 방법을 사용하여 군집화하였으며, 군집을 나누기 위해 17개의 변수를 선정하였고, 17개의 다중공선성 문제와 군집을 나누기 위한 차원축소의 방법 중 주성분 분석과 요인분석을 비교하였다. 본 연구에서는 주성분분석과 요인분석 모두 2개의 차원으로 축소하였으며 주성분분석에서는 3개의 군집으로 나뉘었지만 분석하고자 하였던 소비 패턴에 대한 군집의 특성이 잘 나타나지 않았으며 요인분석에서는 분석가가 보고자 하는 소비 패턴의 특징이 잘 나타났다.
유비쿼터스 컴퓨팅이 생활의 일부가 되어가면서 정보의 양도 급속도로 늘어나고 있으며, 이로 인해 많은 데이터 속에서 정보를 찾아내는 기술이 부각되고 있다. 고객 기반의 협력적 필터링을 이용한 고객 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 속성을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하고 있다. 그리고 비슷한 선호도를 가진 일부 아이템의 정보를 바탕으로 하기 때문에 아이템의 속성은 무시하는 경향이 있다. 본 논문에서는 전자상거래 추천에서 구매 패턴 예측을 위한 고객 특성기반 SOM 학습을 이용한 군집 방법을 제안한다. 제안 방법은 고객의 속성 정보 기반의 유사한 속성의 데이터끼리의 클러스터링을 통해 보다 빠른 시간 내에 고객 성향에 맞는 추천이 가능한 구매 패턴의 추출이 가능하다. 성능평가를 위해 현업에서 사용하는 인터넷 화장품 아이템 쇼핑몰의 데이터를 기반으로 데이터 셋을 구성하여 기존 시스템과 비교 실험을 통해 성능을 평가하여 효용성과 타당성을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.