• Title/Summary/Keyword: Shoe Pocket

Search Result 7, Processing Time 0.021 seconds

Experimental Study of Shoe Cushioning System of Shock Absorption Using Fluid Damper with Nano Particles (나노입자 유체댐퍼를 이용한 보행 충격 완화 장치의 충격 흡수에 대한 실험적 연구)

  • Moon B.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.14-20
    • /
    • 2005
  • This study developed and evaluated a shoe cushioning system to reduce impact force patterns during running. The shoe cushioning system is composed with a poly urethane pocket, which contains water and porous grains to absorb the force against the weight inside the pocket. Load-displacement curves for the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets that have air, water or grains. Mechanical testings showed that the pocket with 5 g particles was the best for the shoe cushioning system. This founding will be helpful to designing the shoe.

  • PDF

Experimental Study of Evaluating Shoe Cushioning System Using Shock Absorption Pocket (신발의 보행 충격 완화 장치에 대한 충격 흡수력의 실험적 평가)

  • Sun Chang-Hwa;Son Kwon;Moon Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.241-248
    • /
    • 2006
  • Shoe cushioning systems are important to prevent body injuries. This study developed and evaluated a cushioning system to reduce impact force on the heel. The cushioning system suggested consist of a polyurethane pocket, which contains water and porous grains of open cell to dissipate the energy effectively. Load-displacement curves fer the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets with air, water or grains. Mechanical testings showed that the pocket with 5g porous grain was the best for the cushioning system. This system can be applied to the design of various kind of sport shoes.

CFD Analysis on Shoe and Swash-Plate of Axial Piston Pump (사판식 유압펌프의 피스톤 슈 간극의 유동해석)

  • Kim, In-Soo;Lee, Kyong-Hoon;Bae, Jae-Man
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.156-158
    • /
    • 2008
  • Along the various gap distance between shoe and swash plate and pocket diameter, lifting force of piston shoe during the compressing stage was calculated. The flow in piston, orifice, shoe, and back space was considered to be 2-dimension axisymmetric and analysed by Fluent, a commercial CFD Software. The wall boundary condition was given as nonslip and adiabatic, while the change in fluid viscosity was considered as linear along temperature. Calculated lifting force and oil leakage of shoe was used in the design of a pump to confirm the shape of the shoe.

  • PDF

Analysis of the Pressure Distribution for Press Shoe considering Partially Changed Curvature of Bearing Surface

  • Park, Sang-Shin;Park, Young-Ha;Lee, Young-Ze;Han, Man-Cheol
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.123-124
    • /
    • 2002
  • A press shoe is an element of a machine for squeezing water from wood pulp in the field of manufacturing paper. This is used to compress the pulp enveloped by felt sheet with a large roller. The squeezing force is made by hydraulic pressure. The press shoe has a mechanism similar to a partial hydrostatic bearing. The pressure profile between press shoe and roller affects their squeezing ability, and partial peak pressure can tear the wet pulp. The curvature of the surface of press shoe varies to reduce the peak pressure and increase the mean pressure simultaneously. Therefore, the prediction of pressure distribution considering partially changed curvature of hydrostatic bearing is very important for designing the press shoe. In this study, the difference formulation of Reynolds' equation for partial hydrostatic bearing is by direct numerical method and a computer program to calculate the pressure distribution is developed. We investigate the effect of partially changed curvature of bearing surface on the pressure distribution. Other design parameter for hydrostatic bearing such as depth of pocket and relative velocity are also studied.

  • PDF

Analysis of the Pressure Distribution for Press Shoe considering Partially Changed Curvature of Bearing Surface

  • Park, Sang-Shin;Park, Young-Ha;Lee, Young-Ze;Han, Man-Cheol
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.90-94
    • /
    • 2002
  • A press shoe is an element of a machine for squeezing water from wood pulp in the field of manufacturing paper. This is used to compress the pulp enveloped by felt sheet with a large roller. The squeezing farce is made by hydraulic pressure. The press shoe has a mechanism similar to a partial hydrostatic bearing. The pressure profile between press shoe and roller affects their squeezing ability, and partial peak pressure can tear the wet pulp. The curvature of the surface of press shoe varies to reduce the peak pressure and increase the mean pressure simultaneously, Therefore, the prediction of pressure distribution considering partially changed curvature of hydrostatic bearing is very important far designing the press shoe. In this study, the difference formulation of Reynolds equation far partial hydrostatic bearing is derived by direct numerical method and a computer program to calculate the pressure distribution is developed. We investigate the effect of partially changed curvature of bearing surface on the pressure distribution. Other design parameter far hydrostatic bearing such as depth of pocket and relative velocity are also studied.

A Study on the Development of Functional Health Shoe (기능성 건강구두의 개발에 대한 연구)

  • 김명웅;전광식
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.196-200
    • /
    • 2001
  • Foot has two functions : one is walking (or propulsion), the other is supporting or protecting of human body. In spite of such important roles, the importance of foot in keeping health has been easily disregarded. The bottom of foot is usually regarded as the second heart, for it is the pocket edition of all the principal parts of human body. Shoe is one of the tools to protect foot, and to wear a good shoe is the most demanded point in keeping health, Shoe can be different in kinds and shapes according to each one's usage. That is, different conditions of different people should have the different results in the material, design, last, pattern and structure in manufacturing shoe. A good shoe is absolutely a shoe with its right suitability, elasticity and adaptability. To make this healthy shoe, it is needed to design in the way of human technology, and the relative and scientific materials are basically required in manufacturing it. Recently there is an increasing demand for milti-functional shoe that can improve the efficiency of work in parallel with the maintenance of health. Accordingly this paper put its main purpose on the development of a healthy shoe based on proper and right theory and test.

Hydrostatic Bearing Characteristics of Slipper in Piston Pump . Motor (액셜 피스톤 펌프 . 모터의 피스톤 구면부 정압 윤활특성)

  • 박경민;김종기;오석형;송규근;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.186-193
    • /
    • 2001
  • In the high pressure state, the leakage flow rate of hydraulics is one of serious problems and the great reason to decrease the volume efficiency. In this paper, I tried to clarify tribology characteristics for the slipper hydrostatic bearing in swash plate type axial piston pumps and motors by means of experiment . I measured the leakage flow rate between swash plate and piston shoe with change the supply pressure and oil temperature at a swash plate angle of 0。 . And I also investigated the slipper pocket pressure and calculated oil film thickness for theoretical method. So. 1 have analyzed the tribology characteristics of hydrostatic bearing for leakage flow rate and oil film thickness with oil temperature and supply pressure.

  • PDF