• Title/Summary/Keyword: Shock response

Search Result 643, Processing Time 0.026 seconds

Analysis of heat, cold or salinity stress-inducible genes in the Pacific abalone, Haliotis discus hannai, by suppression subtractive hybridization

  • Nam, Bo-Hye;Park, Eun-Mi;Kim, Young-Ok;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • In order to investigate environmental stress inducible genes in abalone, we analyzed differentially expressed transcripts from a Pacific abalone, Haliotis discus hannai, after exposure to heat-, cold- or hyposalinity-shock by suppression subtractive hybridization (SSH) method. 1,074 unique sequences from SSH libraries were composed to 115 clusters and 986 singletons, the overall redundancy of the library was 16.3%. From the BLAST search, of the 1,316 ESTs, 998 ESTs (75.8%) were identified as known genes, but 318 clones (24.2%) did not match to any previously described genes. From the comparison results of ESTs pattern of three SSH cDNA libraries, the most abundant EST was different in each SSH library: small heat shock protein p26 (sHSP26) in heat-shock, trypsinogen 2 in cold-shock, and actin in hyposalinity SSH cDNA library. Based on sequence similarities, several response-to-stress genes such as heat shock proteins (HSPs) were identified commonly from the abalone SSH libraries. HSP70 gene was induced by environmental stress regardless of temperature-shock or salinity-stress, while the increase of sHSP26 mRNA expression was not detected in cold-shock but in heat-shock condition. These results suggest that the suppression subtractive hybridization method is an efficient way to isolate differentially expressed gene from the invertebrate environmental stress-response transcriptome.

Shock Response Analysis of Rotor-Bearing System using the State-Space Newmark Method (상태공간 Newmark 기법을 이용한 로터-베어링 시스템의 충격응답 해석)

  • Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Cheol;Kim, Yeong-Chun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.242-247
    • /
    • 2004
  • In this study was proposed a transient response analysis technique of a rotor system, applying the generalized FE modeling method of a rotor-bearing system considering a base-transferred shock force and together the state-space Newmark method of direct time integration scheme based on the average velocity concept. Experiments were performed to a test rig of a mock-up rotor-bearing system with series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical and experimental results were carried out. The transient reponses of the rotor were sensitive to duration times and shape-qualities of the shock waves, and overally the analytical results agreed quite well with the experimental ones. Particularly, in cases that the frequencies, $1/(2{\times}duration\;time)$, of the shock waves were close to the critical speed of the rotor-bearing system, resonances occurred and the transient responses of the rotor were amplified.

  • PDF

Dynamic Response of Hull Mounted Cylindrical Array Sonars to Shocks (선체부착형 원통형 배열 소나의 선체충격에 의한 응답)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.146-154
    • /
    • 2009
  • Dynamic response of a hull mounted sonar(HMS) to shocks transmitted through hull structures is analyzed and then the structural reliability of the sonars is evaluated. Finite element model of the hull mounted sonar is established and the transient responses to the shock is calculated using MSC.NASTRAN. According to BV043, the maximum allowable accelerations at the foundation of the sonar are converted from the shock spectra allowable for HMS. They are applied vertically and horizontally, respectively, using the large mass method. The structural reliability is evaluated by comparing the von-Mises stresses with the material yield stress. The drum for sensors shows a high reliability owing to mounts by which the shock waves from the base structure are well protected. However, the mounts between the base structure and the drum to mount sensors show a high stress intensity. The base structure also reveals a high stress intensity at the connection points to the hull.

Response Characteristics of the Cushion Materials for Packaging of the Pears by Mechanical Shock during Transportation (유통 중 기계적 충격에 의한 배 포장완충재의 응답 특성)

  • Jung, Hyun-Mo;Kim, Man-Soo;Kim, Ghi-Seok;Cho, Byeong-Kwan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.1
    • /
    • pp.25-28
    • /
    • 2007
  • Physical damage on fruits and vegetables caused by shock degrades the value of product in the fresh market. In order to design a product/package system to protect the product, the peak acceleration or G force to the product that causes shock damage needs to be determined. Shock cushion packaging is applied to protect goods of all kinds. It can be adapted in their shape to any product to be packed, so that its shock absorbing properties is determined by geometry of the product. The shape of a cushion can be adapted to the expected shock loads. To analyze the response properties of cushion materials for packaging of the pears for optimum packaging design during transportation, shock tests were carried out. Shock acceleration that is happened in pears were appeared very high by $25{\sim}30G$ in the input shock acceleration of 14.1618 G that was measured in transportation road. This means that the pears receive the shock acceleration more than maximum double itself and the damage by this can happen and the shock acceleration increase in case use PE tray cup and PE net in fruits, the use of corrugated fiberboard pad may become one method that it can reduce the damage by the shock in packaging of fruits.

  • PDF

Approximate Analysis of Shock Response for Ship Hull Girder (선체거더 충격응답의 근사해석)

  • Song, C.T.;Park, B.W.;An, C.W.;Cho, Y.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.75-84
    • /
    • 1996
  • The structural response of naval surface ships subjected to underwater shock loadings is a very important problem in viewpoint ship survivability. In practice, among others the case of noncontact underwater explosions is the only one shock loading considered in designing naval surface ships to resist underwater explosions. In orator to efficiently design naval surface ships and their equipment to resist such shock loadings it seems necessary to prepare theoretical analysis tools and/or empirical design criteria which can predict the three dimensional transmission of shock waves. This paper describes a simplified method to analyse shock responses for ship hull girder, which uses a loading function to approximate the shock loadings on ship structures due to noncontact underwater explosions. A couple of examples to apply this method are provided.

  • PDF

Shock-Resistance Responses of Frigate Equipments by Underwater Explosion

  • Kim, Hyunwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.161-167
    • /
    • 2022
  • Three-dimensional finite element analysis (3D-FEA) models have been used to evaluate the shock-resistance responses of various equipments, including armaments mounted on a warship caused by underwater explosion (UNDEX). This paper aims to check the possibility of using one-dimensional (1D) FEA models for the shock-resistance responses. A frigate was chosen for the evaluation of the shock-resistance responses by the UNDEX. The frigate was divided into the thirteen discrete segments along the length of the ship. The 1D Timoshenko beam elements were used to model the frigate. The explosive charge mass and the stand-off distance were determined based on the ship length and the keel shock factor (KSF), respectively. The UNDEX pressure fields were generated using the Geers-Hunter doubly asymptotic model. The pseudo-velocity shock response spectrum (PVSS) for the 1D-FEA model (1D-PVSS) was calculated using the acceleration history at a concerned equipment position where the digital recursive filtering algorithm was used. The 1D-PVSS was compared with the 3D-PVSS that was taken from a reference, and a relatively good agreement was found. In addition, the 1D-PVSS was compared with the design criteria specified by the German Federal Armed forces, which is called the BV043. The 1D-PVSS was proven to be relatively reasonable, reducing the computing cost dramatically.

Comparison of UNDEX Whipping Response of Hull Girder according to Modeling Methods (해석모델링 방법에 따른 선체거더의 수중폭발 휘핑응답 비교)

  • Kwon, Jeong-Il;Chung, Jung-Hoon;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.631-636
    • /
    • 2005
  • One and three dimensional whipping response analyses of a naval surface combatant subjected to an underwater explosion bubble pulse were carried out to compare the efficiency and accuracy according to the modeling methods. In 1-D analysis, program UNDEXWHIP developed by KIMM was used, which is based on the thin-walled Timoshenko's beam theory and on the modal analysis method using wetted vibratory modes of the hull girder. In 3-D analysis, three finite element models were suggested using LS-DYNA/USA code, such as 3-D beam model considering geometric shape of wetted side shell, coarse and fine 3-D F.E. models. Through the comparison of results from the 1-D and 3-D analyses, it could be confirmed that 1-D analysis result is in good agreement with 3-D analysis ones, and that fine 3-D F.E. model, shock analysis one, is also used both in the shock response and whipping response analyses for the analyst effort and time savings.

Stress-shock Response of a Methylotrophic Bacterium Methylovorus sp. strain SSl DSM 11726

  • Park, Jong H.;Kim, Si W.;Kim, Eungbin;Young T. Ro;Kim, Young M.
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.162-167
    • /
    • 2001
  • Methylovorus sp. strain SS1 DSM 11726 was found to grow continuously when it was transferred from 30$\^{C}$ to 40$\^{C}$ and 43$\^{C}$. A shift in growth temperature from 30$\^{C}$ to 45$\^{C}$, 47$\^{C}$ and 50$\^{C}$ reduced the viability of the cell population by more than 10$^2$, 10$^3$and 10$\^$5/ folds, respectively, after 1h cultivation. Cells transferred to 47$\^{C}$ and 50$\^{C}$ after preincubation for 15 min at 43$\^{C}$, however, exhibited 10-fold increase in viability. It was found that incubation for 15 min at 40$\^{C}$ of Methylovorus sp. strain SSl grown at 30$\^{C}$ was sufficient to accelerate the synthesis of a specific subset of proteins. The major heat shock proteins had apparent molecular masses of 90, 70, 66, 60, and 58 kDA. The 60 and 58 kDa proteins were found to cross-react with the antiserum raised against GroEL protein. The heat shock response persisted for over 1h. The shock proteins were stable for 90 min in the cell. Exposure of the cells to methanol induced proteins identical to the heat shock proteins. Addition of ethanol induced a unique protein with a molecular mass of about 40 kDa in addition to the heat-induced proteins. The proteins induced in paraquat-treated cells were different from the heat shock proteins, except the 70 and 60 kDa proteins.

  • PDF

Comparative study on response of thiocyanate shock load on continuous and fed batch anaerobic-anoxic-aerobic sequential moving bed reactors

  • Sahariah, B.P.;Chakraborty, S.
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • A comparative study on response of a toxic compound thiocyanate ($SCN^-$) was carried out in continuous and fed batch moving bed reactor systems. Both systems had three sequential anaerobic, anoxic and aerobic reactors and operated at same hydraulic retention time. Feed $SCN^-$ was first increased from 600 mg/L to 1,000 mg/L for 3 days (shock 1) and then from 600 to 1,200 mg/L for 3 days (shock 2). In anaerobic continuous reactor, increase of effluent COD (chemical oxygen demand) due to shock load was only 2%, whereas in fed batch reactor it was 14%. In anoxic fed batch reactor recovery was partial in terms of $SCN^-$, phenol, COD and $NO{_3}{^-}$-N and $NO{_2}{^-}$-N removals and in continuous reactor complete recovery was possible. In both systems, inhibition was more significant on aerobic reactors than anaerobic and anoxic reactors. In aerobic reactors ammonia removal efficiency deteriorated and damage was irreversible. Present study showed that fed batch reactors showed higher substrate removal efficiency than continuous reactors during regular operation, but are more susceptible to toxic feed shock load and in nitrifying reactor damage was irreversible.