• Title/Summary/Keyword: Shipbuilding Process Simulation

Search Result 81, Processing Time 0.025 seconds

Work Planning Using Genetic Algorithm and 3-D Simulation at a Subassembly Line of Shipyard (유전자 알고리즘을 이용한 조선 소조립 로봇용접 공정 작업 계획 및 3-D 시뮬레이션)

  • 강현진;박주용;박현철
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.18-20
    • /
    • 2004
  • This study is to find the optimal work plan of robot welding in the subassembly process of shipbuilding and to verify the found solution through 3-D simulation. The optimal work plan was established by evenly distributing the work amount to each stage and finding the shortest work sequence. The shortest work sequence was found by using the genetic algorithm. The result was compared with the practically adopted case and verified through the 3-D simulation.

  • PDF

A Study of Life Cycle Assessment in Shipyards Layout using a Discrete Event Simulation Engine (이산 사건 시뮬레이션 엔진을 이용한 조선소 레이아웃의 전과정평가 적용 연구)

  • Lee, Dong-Kun;Nam, Seung-Hoon;Shin, Jong-Gye
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In recent days, global shipbuilding companies have been showing great interest in eco-friendly ship products and trying to reduce environmental pollution - harmful gas and dust in shipbuilding process. Following this trend, Life Cycle Assessment (LCA) was carried out to an application of shipyards layout. LCA is a technique used to assess environmental impacts during the life cycle of products and systems. Until now, LCA has been used through ISO 14040 in somewhat limited industries, such as Building Life Cycle Assessment. Thus, this study analyzes the shipyard layout planning framework and builds life cycle inventory along with the simulation model structure to evaluate environmental impacts.

A Process-centric Simulation Modeling Method Improving Product, Process, and Facility Information Representation Method (제품, 공정, 설비 정보 표현 방법을 개선한 공정 중심 시뮬레이션 모델링 방법)

  • Baek, Seon-Jung;Oh, Daekyun;Lee, Dong Kun;Lee, Philippe;Ryu, Cheolho;Woo, Jong Hun;Jeong, Yong-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.421-431
    • /
    • 2017
  • A process-centric simulation modeling method has been proposed to define a shipbuilding simulation model. Existing modeling methods have limitations for expressing various production information for a shipyard. The advanced process-centric modeling method proposed in this paper offers an improvement, effectively representing production information and constraints for a shipyard. To achieve this, a method and diagram components to define a process-centric simulation model in detail have been suggested. The modeling method can assign priorities when multiple products and facilities are assigned to the process. And layer concept was applied to express simulation model with hierarchical structure. To verify the effectiveness of the modeling method, comparative analysis has been performed and the actual shipbuilding process has been modeled using the proposed method. When a single facility was used for various purposes, we found that the proposed method was more advantageous than existing methods. As a result, it was possible to express constraints and flows that were difficult to identify with existing process-centric simulation modeling methods, and the methods were improved for use in shipyard production planning verification simulations.

A Study for Improvement of Work using Digital Human Modeling (디지털 휴먼 모델링 도구를 이용한 작업 개선에 관한 연구)

  • Kim, Dong-Joon;Park, Ju-Yong;Kim, Hyun-Woo;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • In these days, work-related musculoskeletal disorders(WMSDs) is one of the issues in the shipbuilding industry. As the number of injured workers and demands for worker's compensation have rapidly increased, improvement of work conditions and environments to prevent WMSDs has been more demanded. To reduce WMSDs' hazards in the shipbuilding industry, simulation technique which showed it's ability of increasing the manufacturing productivity was applied, because simulation technique has the evaluation ability for a worker's danger level of production process by RULA(Rapid Upper Limb Assesment). In this research, worker's altitude had modeled and worker's action has simulated. After the caution level was evaluated, we pointed out clues which had high workload. To reduce work-load, we applied ergonomic principles for improving working conditions and environments. Improved working conditions and environments were simulated using human modelling and simulation and their workload were evaluated again.

The Implementation of Drilling Simulation for Offshore Rig Education (교육용 해양플랜트 Rig 굴착 시뮬레이션 구현)

  • Park, Ju-Yong;Jo, Hyo-Jae;Lee, Jee-Hoon;Lim, Young-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.11-17
    • /
    • 2011
  • The purpose of this study is 3 dimensional modeling of lower part of drilling system in offshore rig and simulation of drilling process. Recently, shipbuilding companies have been focusing on offshore rigs due to their high added-value and the reduced demand of new shipbuilding. In most cases, however, the basic design, installation and management of offshore rig are carried out by foreign companies. Therefore, it is difficult to obtain the knowledge and information of drilling system. In this study drilling devices, BOP(Blowout Preventor) and cementing job and mud circulation related components are included as the main components of offshore rig. The structure and function of them were analyzed from a viewpoint of object-oriented technique. On the basis of this analysis they were modeled in the 3 dimensional structure with 3D software tool such as CATIA and 3DVIA Composer. The drilling process was simulated according to the scenario of drilling operation. This simulation system can be effectively used for an educational tool for students and engineers in ocean plant industries.

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

A Study of Product Simulation for Establishing the Optimal Production Scheduling of the Panel line in a Shipyard (조선소 판넬라인의 최적 생산계획 수립을 위한 생산 시뮬레이션 연구)

  • Park, Ju-Yong;Kim, Se-Hwan;Choi, Woo-Hyun
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.62-66
    • /
    • 2006
  • Panel line is an important process occupying the largest work amount in shipbuilding. In this research product simulation has been carried out to establish the optimal production scheduling. For this purpose a web-based panel line simulator was developed using an object modeling technology and C# language. The balance of work-load and increase in the productivity by the improvement of production facilities and process are the key factors for a good scheduling. In this study SPRT(Shortest Remaining Process Time) rule was applied for the work-load balancing and a good result achieved. To increase the productivity in the stiffener welding stage which is a bottleneck; process, more welding heads and higher welding speed were tested using the developed simulator. The simulation results showed that either more welding head or higher welding speed decreased the total work time. Use of both, however, deteriorated the productivity because of the bottleneck in the following stage. This result points out that the improvement of production facilities and/or process should be evaluated with their influences on the leading and following processing stage.

An Effective Adaptive Autopilot for Ships

  • Le, Minh-Duc;Nguyen, Si-Hiep;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.720-723
    • /
    • 2005
  • Ship motion is a complex controlled process with several hydrodynamic parameters that vary in wide ranges with respect to ship load condition, speed and surrounding conditions (such as wind, current, tide, etc.). Therefore, to effectively control ships in a designed track is always an important task for ship masters. This paper presents an effective adaptive autopilot ships that ensure the optimal accuracy, economy and stability characteristics. The PID control methodology is modified and parameters of a PID controller is designed to satisfy conditions for an optimal objective function that comprised by heading error, resistance and drift during changing course, and loss of surge velocity or fuel consumption. Designing of the controller for course changing process is based on the Model Reference Adaptive System (MRAS) control theory, while as designing of the automatic course keeping process is based on the Self Tuning Regulator (STR) control theory. Simulation (using MATLAB software) in various disturbance conditions shows that in comparison with conventional PID autopilots, the designed autopilot has several notable advantages: higher course turning speed, lower swing of ship bow even in strong waves and winds, high accuracy of course keeping, shorter time of rudder actions smaller times of changing rudder direction.

  • PDF

Framework for an Advanced Naval Ships Acquisition based on PLM (PLM 기반 함정획득을 위한 프레임워크 개발 방법론)

  • Shin, Jong-Gye;Oh, Dae-Kyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.189-202
    • /
    • 2009
  • As naval ships become more complex with the reduced cost and time for their development, modeling and simulation are increasingly used. The US navy has being applied the concept of a simulation-based acquisition(SBA) to their acquisition process. However, there have been few studies on a simulation-based acquisition for naval ships (SBA-NS) in the Korean naval shipbuilding. In this paper, we discuss a framework to establish collaborative environment(CE) for an advanced naval ships acquisition based on PLM. For this, we propose architectures and a naval ship information model for design the framework of the SBA-NS. To design the framework, we develop the methodology that is composed of three major processes that are the requirement analysis process, the SBA-NS architectures design process and the design process of a reference model of a naval ship product information. Applying the methodology, the framework suitable for the Korean Navy context is developed.

A Study on Real-Time Planning System in Multi Progress Planning Environment (다중 공정 계획 환경하의 실시간 계획 반영 시스템에 관한 연구)

  • Lee, Dae-Hyung;Kim, Young-Sup;Kim, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.547-553
    • /
    • 2008
  • Multi Progress Planning System problem in a multi-stage manufacturing system have a complexity and peculiarity different from other kinds of production system. World leading company has invested much cost and effort into a Real-Time Planning System and intelligent manufacturing field to obtain their own competitiveness. Especially Real-Time Planning System for ship production process as a part of intelligence for a shipyard. Real-Time Planning System, simulation based system, or virtual manufacturing system is an approach to achieve a such goal. It is expected that the Real-Time Planning System will contribute to the improvement of the productivity in working process at a shipyard. Also, This Real-Time Planning System will optimize the entire shipbuilding process in a multi progress planning environment for the delivery.