• Title/Summary/Keyword: Ship speed

Search Result 1,270, Processing Time 0.032 seconds

Calculation of the coupled free, transverse vibrations of the multi-supported shaft system by transfer matrix method (전달매트릭스법에 의한 다점지지축계의 연성자유횡진동계산에 관한 연구)

  • 안시영;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.49-63
    • /
    • 1983
  • Coupled transverse shaft vibrations have become the target of great concern in high powered ships such as container ships. Due to increasing ship's dimensions and high propulsive power, resonance frequencies of the propeller shaft system tend to decrease and can appear in some cases within the operating speed range of engine. In this connection, the coupled free transverse vibrations of shaft system in two planes are theoretically investigated. This shaft system carries a number of discs and is flexibly supported by a number of bearing stiffness are considered for the calculation. Transfer matrix method is applied to calculate the shaft responses in both planes. A digital computer program is developed to calculate the shaft responses of the coupled transverse vibrations in two planes. An experimental model shaft system is made. It is composed of a disc, shafts, ball bearings thrust bearings and flexible bearing supports. The shaft system is excited by an electrical magnet, and shaft vibration responses in two planes are measured with the strain gage system. From these measurements, the natural frequencies of the shaft system in both planes are found out. The developed program is also used to calculate the shaft vibration responses of experimental model shaft system. From the results of these calculations, the natural frequencies of shaft system in two planes are derived. Theoretical predictions of model shaft natural frequencies show good agreements with its esperimental measurements.

  • PDF

A Study on the Optimum Structural Design of High Speed Ships with Twin Hulls (쌍동형 초고속선의 최적 구조 설계에 관한 연구)

  • C.D. Jang;S.I. Seo;S.K. Kim;J.O. Kwon;S.D. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.109-118
    • /
    • 1994
  • In this study, an optimization method to design the hull structure of the surface effect ships with twin hulls is proposed for the purpose of minimization of weight based on the regulations of DnV class, and computer programs following the method are developed. The method uses simple formulas as to bending and buckling strength of beams and plates to design local structures, and considers the effect of interaction between longitudinal girders and transverse web frames by grillage analysis and calculates torsional strength of the cross structure by the simplified method. Global optimization of the midship section is attained by integration of optimized substructures. According to optimized results by applying the method to the designed ship, reduction of 20 percent of hull weight can be shown, and optimum transverse frame space can be obtained.

  • PDF

An Experimental Study on Hull Resistance Characteristics and Attitude by an Outboard Propulsion System (선외기 추진장치의 저항특성 및 항주자세에 대한 실험 연구)

  • Park, Joo-sik;Won, Jun-hee;Jang, Dong-won
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.301-307
    • /
    • 2017
  • The planing hull is characterized by a large change in the posture according to the speed, and the shape of the propeller varies, so that the hull resistance varies greatly depending on the propeller used. Especially, the Savitsky system, which is widely used for estimating the resistance of planing hull, does not consider the characteristics of these propeller and ship bottom spray rails. In this paper, in order to investigate the difference in resistance characteristics between the propeller and the bottom of the propeller of 6m and 12m class propeller using propeller such as outboard or stern drive, A comparative test was conducted on resistance and attitude posture changes in the Circulating Water Channel of Institute of Medium & Small Shipbuilding. As a result of comparison test, it was confirmed that there is a clear difference in the attitude change due to the presence of the bottom floor spray rail and the change in resistance characteristics due to the installation of the propeller. However, attitude change with the propeller was found to be insignificant.

Design of Asymmetric Pre-swirl Stator for KVLCC2 Considering Angle of Attack in Non-uniform Flow Fields of the Stern (선미의 불균일 유동장에서 받음각을 고려한 비대칭 전류고정날개 설계)

  • Lee, Ki-Seung;Kim, Moon-Chan;Shin, Yong-Jin;Kang, Jin-Gu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.352-360
    • /
    • 2019
  • International Maritime Organization (IMO) regulates an emission of greenhouse gases by creating an Energy Efficiency Design Index (EEDI) to reduce environmental pollution. In propulsion system field, studies are under way on Energy Saving Device (ESD), which can improve propulsion efficiency with the propeller, to reduce the EEDI. Among the studies, the study of Pre-Swirl Stator (PSS) has been actively conducted from long time ago. Recently the variable pith angle type pre-swirl stator has been studied to improve the propulsion efficiency in non-uniform flow fields of the Stern. However, for traditional design methods, no specific design method has been established on the blade or location of radius. In this study, proper design method is proposed for each blade or location for radius according to hydrodynamic pitch angle.

Experimental investigations on the resistance performance of a high-speed partial air cushion supported catamaran

  • Yang, Jinglei;Lin, Zhuang;Li, Ping;Guo, Zhiqun;Sun, Hanbing;Yang, Dongmei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • The partial air cushion supported catamaran (PACSCAT) is a novel Surface Effect Ship (SES) and possesses distinctive resistance performance due to the presence of planing bottom. In this paper, the design of PACSCAT and air cushion system are described in detail. Model tests were carried out for Froude numbers ranging from 0.1 to 1.11, the focus is on the influence of air cushion system on resistance characteristics. Drag-reducing effect of air cushion system was proved by means of contrast tests in cuhionborne and non-cushionborne mode. Wave-making characteristics reflect that the PACSCAT would eventually enter planing regime, in which the air could just escape under the seals and the hull body could operate in a steady state. To acquire different air cushion pressure, air flow rate and leakage height were adjusted during tests. Experimental results show that the resistance performance in planing regime would decrease evidently as the increased air flow rate, however, the scheme with medium leakage height presents the best resistance performance in the hump region.

Accuracy evaluation of 3D time-domain Green function in infinite depth

  • Zhang, Teng;Zhou, Bo;Li, Zhiqing;Han, Xiaoshuang;Gho, Wie Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • An accurate evaluation of three-dimensional (3D) Time-Domain Green Function (TDGF) in infinite water depth is essential for ship's hydrodynamic analysis. Various numerical algorithms based on the TDGF properties are considered, including the ascending series expansion at small time parameter, the asymptotic expansion at large time parameter and the Taylor series expansion combines with ordinary differential equation for the time domain analysis. An efficient method (referred as "Present Method") for a better accuracy evaluation of TDGF has been proposed. The numerical results generated from precise integration method and analytical solution of Shan et al. (2019) revealed that the "Present method" provides a better solution in the computational domain. The comparison of the heave hydrodynamic coefficients in solving the radiation problem of a hemisphere at zero speed between the "Present method" and the analytical solutions proposed by Hulme (1982) showed that the difference of result is small, less than 3%.

Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material (3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구)

  • Kim, Min-Jae;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.

Emission Control Routes in Container Shipping between Korea-China

  • Je-Ho Hwang;Si-Hyun Kim
    • Journal of Korea Trade
    • /
    • v.27 no.3
    • /
    • pp.119-146
    • /
    • 2023
  • Purpose - As the severity of air pollution caused by the shipping industry is becoming evident, port authorities have started making efforts to reduce air pollutants. Considering the limitations of the currently implemented emission-control area (ECA) and vessel-speed reduction program (VSRP), which are narrow in the designation range and navigation behavior of ships, this study proposes an emission-control route (ECR) that can complement the aforementioned two environmental policies. Design/methodology - This study was conducted on Korea-China trade service routes (ports of call) of regular liners. This study employed vessel-specific data, which is from an automatic identification system (AIS), for 1,728 maritime transportations performed by 387 container vessels during one year (July 1, 2021, to June 30, 2022). Performing a scenario analysis, this study analyzed the effectiveness of reduced air-pollutant emissions. Findings - This study found that the implementation of ECRs could increase average voyage time by 12.38%-25.28% but reduced air-pollutant emissions by 29.02%-43.54%. Additionally, the increase in average voyage times reduces the anchorage time of ships outside ports, providing an incentive for ship operators to voluntarily participate in compliance with regulations, thereby contributing to the establishment of a virtuous cycle of air-environmental policies related to ships. Originality/value - This study aims to verify the policy effectiveness by designing an ECR scope for liner trade routes between Korea and China. Therefore, originality and the value of this study includes conceptualizing the ECR system, analyzing its environmental performance, and exploring new policies that can be implemented while complementing existing policies.

Comparison of Classification and Convolution algorithm in Condition assessment of the Failure Modes in Rotational equipments with varying speed (회전수가 변하는 기기의 상태 진단에 있어서 특성 기반 분류 알고리즘과 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Ki-Yeong Moon;Se-Yun Hwang;Jang-Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.301-301
    • /
    • 2022
  • 본 연구는 운영 조건이 달라짐에 따라 회전수가 변하는 기기의 정상적 가동 여부와 고장 종류를 판별하기 위한 인공지능 알고리즘의 적용을 다루고 있다. 회전수가 변하는 장비로부터 계측된 상태 모니터링 센서의 신호는 비정상(non-stationary)적 특성이 있으므로, 상태 신호의 한계치가 고장 판별의 기준이 되기 어렵다는 점을 해결하고자 하였다. 정상 가동 여부는 이상 감지에 효율적인 오토인코더 및 기계학습 알고리즘을 적용하였으며, 고장 종류 판별에는 기계학습법과 합성곱 기반의 심층학습 방법을 적용하였다. 변하는 회전수와 연계된 주파수의 비정상적 시계열도 적절한 고장 특징 (Feature)로 대변될 수 있도록 시간 및 주파수 영역에서 특징 벡터를 구성할 수 있음을 예제로 설명하였다. 차원 축소 및 카이 제곱 기법을 적용하여 최적의 특징 벡터를 추출하여 기계학습의 분류 알고리즘이 비정상적 회전 신호를 가진 장비의 고장 예측에 활용될 수 있음을 보였다. 이 과정에서 k-NN(k-Nearest Neighbor), SVM(Support Vector Machine), Random Forest의 기계학습 알고리즘을 적용하였다. 또한 시계열 기반의 오토인코더 및 CNN (Convolution Neural Network) 적용하여 이상 감지와 고장진단을 수행한 결과를 비교하여 제시하였다.

  • PDF

Effectiveness Analysis on the Coherence and Time for Synthetic Aperture Sonar (코히어런스 영향과 시간에 따른 실측 데이터의 합성 효과 실험)

  • Kang Hyun-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.172-177
    • /
    • 2006
  • Various research and development on Synthetic Aperture Sonar technique is under way to enhance bearing resolution of a SONAR system. In this paper, we estimated perturbed array shapes, and compensated distortion by using estimated away shapes and synthesized arrays in aperture domain such as an ETAM technique. As experimental data, we used the one obtained from towed array in neighboring waters of the Korean peninsula. Through simulation on data where tow-ship speed is maintained at a constant level, we confirmed that synthesis effect of increasing SNR and narrowed beam width of main lobe was consistently demonstrated for about 1 minute when coherence of target signal was maintained. Also, we showed that the synthesis effect with respect to time was constantly maintained.