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a b s t r a c t

An accurate evaluation of three-dimensional (3D) Time-Domain Green Function (TDGF) in infinite water
depth is essential for ship’s hydrodynamic analysis. Various numerical algorithms based on the TDGF
properties are considered, including the ascending series expansion at small time parameter, the
asymptotic expansion at large time parameter and the Taylor series expansion combines with ordinary
differential equation for the time domain analysis. An efficient method (referred as “Present Method”) for
a better accuracy evaluation of TDGF has been proposed. The numerical results generated from precise
integration method and analytical solution of Shan et al. (2019) revealed that the “Present method”
provides a better solution in the computational domain. The comparison of the heave hydrodynamic
coefficients in solving the radiation problem of a hemisphere at zero speed between the “Present
method” and the analytical solutions proposed by Hulme (1982) showed that the difference of result is
small, less than 3%.
© 2020 The Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

An efficient hydrodynamic analysis is essential to determine the
interaction of flow and ship structure for the safe design of ship
operation in water (Zhang et al., 2019). As the 3D TDGF is simpler
and requires less computational efforts than the frequency domain
Green function approach, it has been widely used in the hydrody-
namic analysis of ships with the effect of constant forward speed in
the time-domain environment. Some of the research works related
to this subject in the past included the time domain analysis of ship
motions by Liapis (1986) and Datta et al. (2011), the time domain
analysis of wave exciting forces on ships by King (1987), a
comparative linear and nonlinear ship motions by Singh and Sen,
(2007) and the study of ship motions with forward speed by Sun
and Ren (2018). As the use of time-domain panel method re-
quires much computational efforts for solving the boundary
element integral equation in thousands of time steps, an accuracy
evaluation of 3D TDGF is necessary for the efficient hydrodynamic
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analysis of ships.
For solving the linear time-domain problem in hydrodynamic

analysis, the linearization of boundary conditions of 3D TDGF
would first have to be obtained (Wehausen and Laitone, 1960). It is
extremely difficult to evaluate the 3D TDGF in an infinite range
convolution integral with an oscillate kernel. Basically, there are
twomain numerical schemes that can be employed for the analysis
namely the series expansion in combination with asymptotic
expansion and the fourth-order Ordinary Differential Equation
(ODE). In accordance with the properties of 3D TDGF in computa-
tional domain, Liapis (1986) adopted the series expansion,
asymptotic expansion and Filon quadrature in the corresponding
regions. King (1987) further extended the use of Bessel function
expansion in an additional region. The series expansion, asymptotic
expansion and polynomial approximation were employed to solve
3D TDGF (Newman, 1992). The above-mentioned methods actually
require numerical experience to determine the partition domain
between various computational regions. An improper computa-
tional domain subdivision could otherwise lead to a large numer-
ical error in the partition domain.

Additionally, a two-parameter interpolation scheme had been
adopted to enhance the efficiency of 3D TDGF for solving the ship
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Fig. 1. A Cartesian coordinate system of 3D TDGF.
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hydrodynamics, such as the research work conducted by Huang
(1992). On the other hand, Shan et al. (2019) calculated the 3D
TDGF and its derivatives using the ascending series expansion and
asymptotic expansion, and then presented the residual functions to
interpolate the value from that in the precomputed table. The 3D
TDGF which was a solution to fourth-order ODEwas determined by
Clement (1998). Subsequently, Duan and Dai (2001) presented the
derivatives of ODE directly for solving the 3D TDGF using the Lap-
lace transform. Based on the mathematical properties of Bessel
function, Shen et al. (2007) showed that the 3D TDGF could be
represented by the ODE and solved by the fourth-order Runge-
Kutta method. However, the fourth-order Runge-Kutta method
could lead to a numerical divergence even at a small constant time-
step in the numerical computation after long time simulation due
to algorithm damping (Tong, 2013).

The solving of ODE using the Taylor series expansion to enhance
its accuracy and numerical stability by Chuang et al. (2007)
demonstrated that the terms in the equation increased with the
time parameter, and were continued to increase as the field and
source points closed to the free surface. The solving of the ODE
based on the Precise Integration Method (PIM) by Li et al. (2015)
was based on the proposal by Zhong (2004), in which the PIM
method was shown to provide a better and stable solution than any
other numerical methods. However, the comparison of various
numerical methods for solving the ODE by Bingham (2016)
concluded that the PIM was less efficient and much time-
consuming.

In this paper, in order to evaluate the 3D TDGF in a more ac-
curate and efficient manner in the time domain, the computational
domain is subdivided into three regions namely the ascending se-
ries expansion at small time parameter, the asymptotic expansion
at large time parameter, and the Taylor series expansion at mod-
erate time parameter. The properties and the factors affecting the
accuracy evaluation of the 3D TDGF are analyzed in detail. The
present method for evaluation of 3D TDGF with better accuracy and
efficiency is verified comparedwith the other method (Shan, 2019),
especially at moderate time parameter. To further validate the
proposed method, the radiation problem for a hemisphere at zero
speed is solved by using 3D TDGF method. The computed hydro-
dynamic coefficients by the proposed method are in good agree-
ment with analytical solutions of Hulme (1982).
2. Numerical expansion of 3D TDGF

2.1. Description of 3D TDGF

A Cartesian coordinate system oxyz for the study of 3D TDGF is
shown in Fig. 1. In Fig. 1, the oxy plane is coincident with mean free
surface z ¼ 0, and positive z-axis is pointing upwards, and the
points Pðx; y; zÞ and Qðx; h; zÞ denote as the field and source point
respectively. The pointQ 0ðx; h;�zÞ is the image of the source point
Qðx; h; zÞ about the mean free-surface z ¼ 0. The parametersr ¼
jP � Q j,r0 ¼ jP�Q 0j and R are the horizontal distances between the
field point P and the source pointQ . The angle q is between 0 and
p=2, expressing in terms of radian. GðP;Q ; t�tÞ of the 3D TDGF in
the infinite depth was derived by Wehausen and Laitone (1960) as
follows.

GðP;Q ; t � tÞ ¼ GðP;QÞdðt � tÞ þ ~GðP;Q ; t � tÞHðt � tÞ; (1)

where dðtÞ is Dirac delta function, HðtÞ Unit step function, t is
instantaneous time, and t is instantaneous time in time history.

The Rankine GðP;QÞ and memory ~GðP;Q; t�tÞ parts of TDGF
GðP;Q ; t�tÞ are
51
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where J0 is Bessel function of zeroth order, K is wave number, and g
is gravitational acceleration.

The Rankine part G can be integrated over the wet body surface
by using the Hess-Smith method (Hess and Smith, 1964). Consid-
ering l ¼ Kr0, m ¼ �ðzþzÞ =r0 and b ¼ ffiffiffiffiffiffiffiffiffi

g=r0
p ðt�tÞ , the memory

part of TDGF in Eq. (2) can be written in terms of m and b as follows.
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The main objective in the computational domain
(0 � b � ∞0 � m � 1) is to compute the function. With reference to
the research study of Clement (1998), Fðm; bÞ is the solution of the
following fourth-order Ordinary Differential Equation (ODE).

v4Fðm; bÞ
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þmb
v3Fðm;bÞ
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þ
�
1
4
b2 þ 4m

�
v2Fðm; bÞ

vb2
þ7
4
b
vFðm; bÞ

vb

þ9
4
Fðm;bÞ¼0:

(4)

The initial conditions for Eq. (4) are derived as follows.
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>>>:

vð2kÞFðm;0Þ
vbð2kÞ

¼ 0

vð2kþ1ÞFðm;0Þ
vbð2kþ1Þ ¼ ð�1Þkðkþ 1ÞPkþ1ðmÞ

; k¼0;1;/; (5)

wherePkþ1ð �Þ is the Legendre polynomial of order kþ1.
2.2. Taylor series expansion

A set of four first-order ODE are derived to solve Eq. (4) from the

vector ~x ¼
"
F; vFðm;bÞ

vb
;
v2Fðm;bÞ

vb
2 ;

v3Fðm;bÞ
vb

3

#T
as shown below.
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(6)

For the time marching of Eq. (6), the initial condition is a fixed
value of m from Eq. (5). Db ¼ bkþ1 � bk is denoted as a time step
(k ¼ 0;1;2;/). The solution to Eq. (4) is based on the Taylor series
expansion of Fðm; bÞ with starting time bk proposed as

FðbÞ¼
XN
n¼0

anðb� bkÞn; (7)

where N is the order of polynomial expansion.
Eq. (7) is added to ODE, and the terms in the equation are

determined at each power of b. The coefficient an can be solved
based on the initial values of vector ~xðbkÞ using the recursive al-
gorithm (Chuang et al., 2007). The FðbÞ can be obtained by adding
an into Eq. (7).
2.3. Series expansion for small values of b

The auxiliary function f ðpÞ can be expressed as follows.

f ðpÞ¼
ð∞
0

lpeibl
1=2

e�l cos qJ0ðl sin qÞdl: (8)

At p ¼ 1
2, the relationship of the functions Fðm; bÞ and f ðpÞ is. Fðm;

bÞ ¼ Im½f ð1 =2Þ�
For a lower value of b and at zero as an assumption, the factor

eibl
1=2

of f ð1 =2Þ can be expanded as an ascending power series that
each term can be solved by integration. Thus, f ð1 =2Þ can be
expressed by Huang (1992) as follows.

f ð1 =2Þ¼
X∞
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n!

G

�
n
2
þ3
2

�
Pn

2þ1
2
ðcos qÞ; (9)

where Gð $Þ is Gamma function.
Substituting Eq. (10) into Eq. (9), the series expansion of Fðm; bÞ

can be derived as,

Fðm;bÞ¼
X∞
n¼0

ð�1Þnb2nþ1 ðnþ 1Þ!
ð2nþ 1Þ!Pnþ1ðmÞ (10)
2.4. Asymptotic expansion for large values of b

For a large value of b, the asymptotic expansions are adopted to
evaluate the 3D TDGF. The integral part of f ðpÞ can be re-arranged
by substituting l ¼ 62, as proposed by Sun (2009), and then de-
composes to a form of,
52
f ðpÞ ¼ 2
ð∞
0

62pþ1eib6e�62 cos qJ0
�
62 sin q

�
d6

¼ f0ðpÞ þ f1ðpÞ þ f2ðpÞ;
(11)

where

8>>>>>>><
>>>>>>>:

f0ðpÞ ¼ 2
ðib2
0

62pþ1eib6e�62 cos qJ0
�
62 sin q

�
d6

f1;2ðpÞ ¼ 2
ð
ib
2

∞ 62pþ1eib6e�62 cos qHð1;2Þ
0

�
62 sin q

�
d6

; (12)

where Hð1;2Þ
0 ð $Þ is the Hankel function J0ð $Þ±iY0ð $Þ , and
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where cn ¼ ½Gðnþ 1=2Þ�2 =p2nn!.
The integral of f0ðpÞ can be expanded by using the Watson’s

Lemma method as shown below.
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Pnðcos qÞ: (14)

The f1;2ðpÞ can be solved by using the stationary phase method
(Newman, 1992) in which f1ðpÞ is ignored. The final expression of
function f2ðpÞ can thus be expressed as follows.
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2.5. Comparison of various expansion methods

A comparison of the three methods to evaluate the 3D TDGF,
namely the series, the asymptotic and the Taylor serious expansion
methods is conducted and summarized in Table 1.
3. Numerical results and discussion

3.1. Accuracy evaluation of 3D TDGF

To validate the numerical results generated by the proposed
method (referred as “Present method”), the analytical expressions
of Fð0; bÞ and Fð1; bÞ were referenced to the research work of
Clement (1998). The analytical expressions of Fð0; bÞ and Fð1; bÞ are
as follows.



Table 1
Comparison of three expansion methods.

Series expansions Asymptotic expansions Taylor series expansions

Scope of application Small values of b Large values of b All computational domain
Factors affecting

accuracy
m ,b and truncated number n0 of
Eq. (10)

m ,b,truncated number n0 of Eq. (14) and truncated numberðm0;

n0Þof Eq. (15)
m,b,the order of polynomial expansion N and
time step Db

Fig. 3. Absolute errors of Fð0:5; bÞ between PIM method and series expansion.

Fig. 4. Absolute errors of Fð1;bÞ between “Analytical method” and series expansion.
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and

Fð1; bÞ¼ be�b
2=4M

�
� 1 =2;3 =4; b2

.
4
�
; (17)

where Jn and M are Bessel function of order n and Confluent hyper-
geometric function respectively.

The study cases of the numerical analysis at m ¼ 0,m ¼ 0:5 and
m ¼ 1 are considered. The exact results of 3D TDGF computed by the
analytical formulas are denoted as “Analytical method” (Clement,
1998). Since there is no analytical expression of 3D TDGF for the
case m ¼ 0:5, the numerical results of 3D TDGF is obtained by the
PIM method (Li et al., 2015). The main feature of the PIM method is
that a high degree of accuracy can be achieved without considering
the efficiency. In the current numerical analysis, the parameters of
the PIM method are set at m ¼ 50 and N ¼ 20 with constant time
step Db ¼ 0:05. The order of magnitude of absolute errors of Fðm; bÞ
between the “Analytical method” and the PIM method is Oð10�10Þ.

For the method using the series expansion at time parameter
0 � b � 10 as shown in Figs. 2e4, the accuracy of the 3D TDGF
decreases with increasing b. The truncated number n0 increases at
large b value of 10 and higher. At large b, a tendency on the
occurrence of divergence in numerical results is specifically noted.
Similarly, for the method of using the asymptotic expansion at b �
10 as shown in Figs. 5e7, the accuracy of the 3D TDGF also increases
with increasing b. But the convergence of numerical results occurs
at truncated numbers m0 � 3 and n0 � 3.

There is a need to note that the function f1ðpÞ is ignored in the
evaluation of the 3D TDGF using the asymptotic expansion. As b

approaches 10, the error becomes significant and the function f1ðpÞ
forms a smaller part of 3D TDGF that could improve its accuracy.
Since only the asymptotic expansion f0ðpÞ can be used to compute
the 3D TDGF, the error in the numerical analysis at m ¼ 1 is
Fig. 2. Absolute errors of Fð0;bÞ between “Analytical method” and series expansion.

Fig. 5. Absolute errors of Fð0; bÞ between “Analytical method” and asymptotic
expansion.
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therefore significant.
The absolute errors generated among the three methods at time

step Db ¼ 0:05, namely the analytical method, the PIMmethod and



Fig. 6. Absolute errors of Fð0:5;bÞ between PIM method and asymptotic expansion.

Fig. 7. Absolute errors of Fð1;bÞ between “Analytical method” and asymptotic
expansion.

Fig. 9. Absolute errors of Fð0:5;bÞ between PIM method and Taylor series expansion.

Fig. 10. Absolute errors of Fð1;bÞ between “Analytical method” and Taylor series
expansion.

Fig. 11. Algorithm for evaluation of Fðm; bÞ proposed by Shan et al. (2019).
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the Taylor series expansion are plotted in Figs. 8e10. At m ¼ 0, the
amplitude and oscillating frequency of the 3D TDGF increases
rapidly with b, but the evaluation accuracy decreases. At m ¼ 1, the
amplitude and oscillating frequency of the 3D TDGF decreases
rapidly but with increasing b and increasing in accuracy. At a
constant time step, the accuracy evaluation of the 3D TDGF in-
creases with the order of polynomial expansion N.

For the method proposed by Shan et al. (2019) (referred as
“Shan’s method”) at 0 � b � 10 as shown in Fig. 11, the truncated
Fig. 8. Absolute errors of Fð0; bÞ between “Analytical method” and Taylor series
expansion.
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number n of Eq. (10) by using the method of series expansion is 85.
On the other hand for the case of b>10, the truncated number n0 of
f0ðpÞ by using the method of asymptotic expansion is 5, and the
truncated number ðm0;n0Þ of f2ðpÞ is (4, 4).

For the case of 0 � b � 10 as shown in Fig. 12, the accuracy of
Fðm; bÞ decreases with increasing b and the order of accuracy can be
as low as 10�5. At higher value of 10<b<40, the order of accuracy
reduces to Oð10�4Þ as m gradually reach a constant 1.0. The reason is
that the function f1ðpÞ is omitted in the evaluation of Fðm;bÞ. At even
higher value of 40< b, the influence on the omission of f1ðpÞ in the
evaluation of Fðm; bÞ is neglected, and thus the absolute errors of
Fðm; bÞ between the PIMmethod and the Shan’s method is Oð10�7Þ.

In order to improve the accuracy of the 3D TDGF based on the
Shan’s method and the “Present method” as shown in Fig. 13, the
polynomial order N of 20 in Eq. (7) for 8 � b � 50, the series
expansion for 0 � b � 8 and the asymptotic expansion for b>50
are considered.

For the method of using the Taylor series expansion with the



Fig. 12. Absolute errors of Fðm; bÞ between PIM method and Shan’s method.

Fig. 13. Current proposed algorithm for evaluation of.Fðm; bÞ
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order of polynomial N ¼ 20 at8 � b � 50 , as presented in Fig. 14,
the absolute errors of Fðm; bÞ between the PIM method and
Fig. 14. Absolute errors of Fðm; bÞ between PIM method and “Present method”.

Fig. 15. Heave hydrodynamic coe
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the“Present method” can be Oð10�8Þ. The accuracy of the 3D TDGF
improved by a magnitude order of 2 in comparison to that of the
“Shan’s method”. In the computational domain, the absolute errors
of Fðm;bÞ between the PIM method and the“Present method” can
also be Oð10�7Þ.

From these figures, the time the PIM method, the “Present
method” and the “Shan’s method” generate the 3D TDGF
for0 � m � 1 and 0 � b � 250 at 201� 5001 sets of ðm; bÞ is
23,927.4s, 1279.4s and 1547.2s, respectively. The computation is run
on the computer platform of Intel(R) Core (TM) i5-9400F and CPU
2.90 GHz. The comparison of the results revealed that the accuracy
evaluation of the 3D TDGF by the “Present method” is the most
efficient.

3.2. The hemisphere case study

Further, a case study to examine the accuracy of the “Present
method” based on a floating hemisphere is conducted. A constant
panel method is commonly used to solve the radiation wave
problem of floating structures, such as the floating hemisphere
currently considered in the study, at zero speed. The boundary
value equations and governing equations for perturbation velocity
potential are given in the reference (Li et al., 2015). The added mass
and damping coefficient can be obtained after solving the pertur-
bation velocity potential (Beck and Liapis, 1987). For the study, the
non-dimensional form of heave added mass A33 and damping co-

efficient B33 are given as A0
33 ¼ A33

rV and B033 ¼ B33
urV respectively, where

V the hemisphere displacement volume,r is density of fluid, and u

thewave circular frequency. Thewave number is represented as KR.
In the simulation, the floating hemisphere is modelled with 456
panels for analysis. As plotted in Fig. 15, the relative errors of the
heave added mass and damping coefficients between the “Present
method” and the analytical solutions proposed byHulme (1982) are
within 3%.

4. Conclusion

In this paper, the accuracy evaluation of the 3D TDGF is carried
out in the computational domain that consists of three subdomains
namely the ascending series expansion, the Taylor series expansion
and the asymptotic expansion. A new subdivision method is pro-
posed based on the properties of 3D TDGF in the computational
domain in which the time parameter can be taken as 8 � b � 50.
The results showed that the “Present method” improves the accu-
racy of the 3D TDGF in an order of magnitude of two in comparison
to that of the Shan’s method (Shan et al., 2019). The “Present
method” also demonstrates a 17.3% higher efficiency, with
fficients of the hemisphere.
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parameters in the range of 0 � m � 1 and 0 � b � 250 at 201� 5001
sets of ðm;bÞ, than the Shan’s method. The hydrodynamic analysis of
the floating hemisphere at zero speed based on the TDGF method
showed that the “Present method” is in good agreement with that
of the analytical solution of Hulme (1982) with a difference of less
than 3%.
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