• Title/Summary/Keyword: Ship plate

Search Result 448, Processing Time 0.034 seconds

A Study on the Ultimate Strength of a Ship's Plate accompanied Secondary Buckling in used Arc-Length Method (호장증분법을 이용한 2차좌굴을 동반한 선체판의 최종강도에 관한 연구)

  • 고재용;박주신;주종길
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.159-165
    • /
    • 2003
  • To Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance nile to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

A Study on the Ultimate Strength of a Ship's Plate in used Arc-Length Method (호장증분법을 이용한 선체판의 최종강도에 관한 연구)

  • 고재용;박주신
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.496-503
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

A Study on the Deflection Mode of a Ship's Plate according to the Arc-Length Method (호장증분법에 의한 선체판의 처짐모드에 관한 연구)

  • 고재용;박주신;이돈출;박성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.732-737
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.

The Wave Exciting Forces Acting on a Submerged-Plate

  • Lee, Sang-Min;Kong, Gil-Young;Kim, Chol-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.203-207
    • /
    • 2004
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of 5m long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method and compare with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS.

  • PDF

A Study on the Ultimate Compressive Strength of Ship Plate with Local Corrosion (국부이상부식을 가진 선체판의 압괴강도에 관한 연구)

  • 고재용;남정길
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.3
    • /
    • pp.65-72
    • /
    • 1998
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. In usual, plate element contributes to inplane stiffness against the action of inplane load. If the plate element has local corrosion, its load carrying capacity under inplane load is expected to be reduced. Until now, however, the research report concerned with this topic has not seen. In this study, a basic study which clarifies the influence of local corrosion on the ultimate collapse strength of plate element subjected to axial compression is carried out by using elasto-platic large deformation finite element analysis. In particular, influence of corrosive area, corrosive thickness and slenderness ratio of dented plate is investigated.

  • PDF

A Study on the Concave Type Hull Plate Forming using Induction Heating System (고주파 유도가열을 이용한 오목 곡면 곡가공에 관한 연구)

  • Hyun, Chung Min;Kim, Dae Kyung;Mun, Seung Hwan;Park, Jung Seo;Dohr, Kyu Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • In shipbuilding, accurate fabrication of curved hull plates is one of the most important steps, since the shape of ship hull, which is very critical in the overall performance of a ship, is a collection of such plates. The curved hull plates forming process requires a significant amount of time by skilled workers in shipbuilding. In general, the workers cause thermal distortion in the plate and forming initial shape using gas heat source. So shipbuilding companies need skilled workers who have long experience. To solve the problem, a lot of researchers tried to develop automation system for curved hull plates. In this paper, we propose automatic heating system with gantry robot, high frequency induction heater to replace the gas heat source and automatic measurement system. We apply the system to forming concave type plate that is actually used in ship manufacturing. In addition, a system was developed to automatically generate heating information, such as the heating location and the heating speed, for actual heating process. Then the system was applied to the actual heating material. It is shown that the proposed triangle heating pattern makes desired concave shape successfully. The induction heating system showed that it can be used for automation system of curved hull plates forming process replacing gas heat source.

A Numerical Study for Improvement of the Speed-performance of a Ship with Flow Control Flat Plate (유동제어평판을 가진 선박의 속도성능 향상에 관한 수치적 연구)

  • Park, Dong-Woo;Choi, Hee-Jong;Yoon, Hyun-Sik;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.268-278
    • /
    • 2009
  • The present study focused on evaluation for the performance of the Flow Control Flat Plate (FCFP) attached in the stern side of the ship. The important function of this FCFP is to enhance the resistance performance through the decrease of stern sinkage and the propulsive performance by the adjustment of inflow velocities in the propeller plane. Two different hull forms were considered to identify the effects of the FCFP. The attachment position, the angle and the size of the FCFP were studied in this numerical simulation. In this paper, the roles of the FCFP were intended to analyze fully through the numerical interpretation.

Nonlinear Analysis of Ship Plating under Lateral Loads. (횡하중(橫荷重)을 받는 선각판(船殼板)의 비선형(非線形) 해석(解析))

  • S.J.,Yim;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1980
  • The nonlinear analysis of ship plating with flat bar stiffners has been carried out by the finite element method based on the load incremental approach. The large deflection analysis has been done by using the Lagrangian description. The elastoplastic analysis has been performed by adopting the flow theory of plasticity and the von Mises yield condition. The layered elements are used to show the process of yielding through the plate thickness in the elasto-plastic analysis. The following results are obtained; 1) According to the large deflection analysis, it is shown that the small deflection theory to the plate is applicable in the range of the lateral deflection-the thickness ratio $w/h{\leqq}0.3$ and ship plating in the range of $w/h{\leqq}0.5$. 2) By means of the elasto-plastic analysis, it is found that the maximum load-carrying capacity of the plate increases as much as 1.8 times of the initial yield load in the case of the simply supported condition and 2.2 times in the clamped condition. It is also shown that the maximum load-carrying capacity of ship plating increase as much as 4.3 times in the simply supported condition and 4.2 times in the clamped condition. This method would be applied and extended to solve combined nonlinear problems which involve both material nonlinearity and geometric nonlinearity.

  • PDF

Comparison of Buckling Check Formulas and Optimal Design (보강판의 좌굴 평가식에 따른 좌굴 강도 및 최적설계의 비교)

  • Jang, Beom-Seon;Cho, Ho-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.71-78
    • /
    • 2009
  • In ship design or offshore structure design, the evaluation of buckling strength (or ultimate strength) is critical to the determination of scantling of stiffened plates. For this reason, it is useful to study the effect of applying different formula or the relationship between stiffened plate with buckling utilization factor (UF). It can facilitate a designer to decide how much the scantling should be reinforced or how much can be reduced for an optimal design. This paper conducts a comparative study for three buckling check methods; DNV-Ship-Rule, DNV-RP-C201, DNV-PULS. The capacity curves and 2D contour plot for utilization factors versus bi-axial in-plane stresses are compared. The contour plots of DNV-Ship-Rule and DNV-PULS show smoothly increasing trends of UF as the applied in-plane stresses increase, however that of DNV-RP-C201 shows rapidly increasing trend as the applied stresses go beyond transverse buckling stress. A sensitivity analysis is performed to investigate the influence level of each parameter of a stiffened plate on UF. Resulting from the analysis, plate thickness is identified to be the most affective parameter to UF regardless of the buckling check methods. Based on the addressed study, optimal designs for bottom plate of 165 K tanker corresponding to three formulas are compared with each other. DNV-PULS yields 1 mm and 2 mm less thickness than DNV-Ship-Rule and DNV-RP-C201, respectively.