• Title/Summary/Keyword: Ship Monitoring

Search Result 379, Processing Time 0.023 seconds

A Development for the Acoustic Underwater Image Transmission System in VORAM Ship (VORAM호의 초음파 수중영상 전송시스템 개발)

  • 임용곤;박종원;강준선
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.351-358
    • /
    • 1998
  • This paper deals with the underwater image transmission system which includes in AUV(Autonomous Underwater Vehicle) Project(that is VORAM(Vehicle for Ocean Research And Monitoring)), developed by KIMM for survey and investigation of a sea-bed through transmitting the underwater image to the mother ship. The system presented in this paper consists of a transducer which has a 136KHz center frequency and it's 10KHz bandwidth, pre-amplifier, $\pi$/4 QPSK(Quadreature Phase Shift Keying) modulation/demodulation method, image compressing method using JPEG technique and modified Stop & protocol. The experimental results of the system is verified to a high performance with 9600 bps for transmitting the underwater image through the basin test. The results of test are also verified which allows to desirable transmission performance compared with the existing developed system and the possibility to put the practical use of survey and investigation. And, the viterbi coding and adaptive equalizer for cancelling the multipath effect are developing for more effective image transmission system. Also, these technique will very effectively adapt to realtime image transmission system.

  • PDF

Small-Scaled Laboratory Experiments for Dynamic Stability Monitoring of Large Circular Steel Pipe Cofferdam of Marine Bridge Foundation (해상교량기초용 대형원형강관 가물막이의 동적 안정성 모니터링을 위한 실내모형실험)

  • Park, Min-Chul;Lee, Jong-Sub;Kim, Dongho;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.123-134
    • /
    • 2019
  • This study presents dynamic responses of circular pipe models as a part of fundamental studies on dynamic stability monitoring of the large circular steel pipe cofferdam with the ship collision. Small-scaled laboratory experiments are performed with a single and bolted circular steel pipes with a diameter, thickness, and height of 30, 0.4, 90 cm, respectively. The bolted circular steel pipe is configured with three segments of 30 cm in height. Circular steel pipe models are embedded in a soil tank, all 1 m in length, width, and height. The thickness of soil in the soil tank is set at 23 cm. The ship collision is simulated with a hammer impacting. The dynamic responses are investigated with different water levels of 25, 40, 55, and 70 cm. Experimental results show that a signal energy decreases with increasing water level. More sensitive reduction in the energy appears for the bolted circular steel pipe. A predominant frequency decreases with increasing water level for both single and bolted steel pipes. The minor reduction in the frequency appears for the bolted circular steel pipe under the water level of 70 cm. This study suggests that the signal energy and frequency response is useful for the dynamic stability monitoring of the large circular steel pipe cofferdam.

Construction of real-time remote ship monitoring system using Ka-band payload of COMS (천리안 위성통신을 이용한 실시간 원격 선박 모니터링 체계 구축)

  • Jeong, Jaehoon;Kim, Tae-Ho;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.323-330
    • /
    • 2016
  • Communication, Ocean and Meteorological Satellite (COMS) was launched in 2010 with three payloads that include Ka-band communication payload developed by Ministry of Science, ICT and Future Planning (MSIP) and Electronics and Telecommunications Research Institute (ETRI). This study introduces a real-time remote vessel monitoring system built in the Socheongcho Ocean Research Station using the Ka-band communication satellite. The system is composed of three steps; real-time data collection, transmission, and processing/visualization. We describe hardware (H/W) and software systems (S/W) installed to perform each step and the whole procedure that made the raw data become vessel information for a real-time ocean surveillance. In addition, we address functional requirements of H/W and S/W and the important considerations for successful operation of the system. The system is now successfully providing, in near real-time, ship information over a VHF range using AIS data collected in the station. The system is expected to support a rapid and effective surveillance over a huge oceanic area. We hope that the concept of the system can be fully used for real-time maritime surveillance using communication satellite in future.

Implementation of pressure monitoring system(PMS) for ship's engine performance analysis(SEPA) based on the web (웹기반 선박엔진 성능분석용 압력모니터링 시스템 구현)

  • Yang, Hyun-Suk;Kwon, Hyuk-Joo;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.929-935
    • /
    • 2014
  • This paper is study on the pressure monitoring system(PMS) for ship's engine performance analysis( SEPA) based on web, with high speed and accuracy. This system is composed of pressure sensor, monitoring module with multi channel A/D converter, TCP/IP and satellite internet communication system. Existing domestic products measure cylinder pressure when piston of first explosive cylinder reached TDC(the top dead center) point and then measure next cylinder pressure manually each angle divided by a constant rotating interval. But presented system monitors in the local and web computer, using pressure information transmitted from pressure sensor installed on each engine. In this system, it is possible to increase the accuracy of the engine performance analysis because not only each TDC points but cylinder pressures synchronized with the TDC points could be measured in real time, accurately. And therefore, it may be used in a various diagnosis of main engines, such as deviations of each cylinder maximum pressures(Pmax) and the TDC firing positions and combustion conditions.

A Study on the Smart Maritime Traffic Safety Monitoring System Based on AI & AR (AI와 AR기반의 스마트 해상교통안전모니터링 시스템에 관한 연구)

  • Kim, Won-Ouk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.642-648
    • /
    • 2019
  • Vessels sail according to the COLREG to prevent a collision. However, it is difficult to apply COLREG under special situation as heavy traffic, at this time personal skills of the operator are required. In this case, traffic control is required through the maritime traffic monitoring system. Therefore, maritime traffic management is globally implemented by VTS. In this system, VTS of icer uses the VTS system to assess risks and recommends possible safety operation to vessels with radio systems. This study considers that the risk analysis method with AI (Artificial Intelligence) technology from the operator's aspect. In addition, the research explains the Maritime Traffic Safety Monitoring System, Including AR (Augmented Reality) technology to increase vessel control efficiency. This system is able to predict hazards and risk priorities, and it leads to sequential elimination of dangerous situations. Especially, the hazard situations can be analyzed from operator's perspective of each vessel instead of the VTS officer's aspect, which is more practical than the conventional method. Furthermore, the result of analysis enables to comprehend quantitative hazardous areas and support recommended routes to avoid a collision. As a result, I firmly believe that the system will support to prevent a collision in complex traffic waters. In particular, it could be adopted as a collision prevention system for Maritime Autonomous Surface Ship, which occupies a significant proportion in Maritime 4th industrial revolution.

Review of Operation Concept and System Requirements for Shore Remote Control Simulator System for MASS (자율운항선박 육상원격제어 시뮬레이터 시스템 운용개념 및 시스템 요구기능 분석)

  • GONG, In-Young;KIM, Yong-Hwan;KIM, Seong-Moo;YOUN, Ik-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.937-945
    • /
    • 2022
  • Maritime autonomous surface ships (MASS) have a high degree of autonomy and operate autonomously along a planned route. However, when necessary, the shore remote control center(SRCC) can directly intervene in ship operations. In this paper, the operation concept of the simulator system, which can be used to educate and train shore remote control officers, responsible for monitoring the operation of autonomous ships on land and remotely controlling them in case of an emergency, is reviewed. The required functions of the simulator system that enables the operation concept are also reviewed. The major parts of the SRCC simulator system are the monitoring station and control station, which simulate the functions of monitoring the operation status of multiple MASS and the functions of the remote operation of MASS in the case of emergency, respectively. Various units to simulate the operation of MASS and traf ic ships and various objects around the MASS are included in the simulator system. The instructor operation station is the central part of the simulator system that integrates and controls the unit systems. Functionally, as conditions under which SRCC is allowed to remotely intervene in the operation of MASS, the emergency situation for remote control (ESRC) has been defined. Moreover, the required functions to cope with these ESRC conditions have been included in the simulator system requirements.

Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port (고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로)

  • Hyunsoo Kim ;Soyeong Jang ;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1173-1183
    • /
    • 2023
  • Over the past 20 years, Korea's overall import and export cargo volume has increased at an average annual rate of approximately 5.3%. About 99% of the cargo is still being transported by sea. Due to recent increases in maritime cargo volume, congestion in maritime logistics has become challenging due to factors such as the COVID-19 pandemic and conflicts. Continuous monitoring of ports has become crucial. Various ground observation systems and Automatic Identification System (AIS) data have been utilized for monitoring ports and conducting numerous preliminary studies for the efficient operation of container terminals and cargo volume prediction. However, small and developing countries' ports face difficulties in monitoring due to environmental issues and aging infrastructure compared to large ports. Recently, with the increasing utility of artificial satellites, preliminary studies have been conducted using satellite imagery for continuous maritime cargo data collection and establishing ocean monitoring systems in vast and hard-to-reach areas. This study aims to visually detect ships docked at berths in the Busan New Port using high-resolution satellite imagery and quantitatively evaluate berth utilization rates. By utilizing high-resolution satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Korea Multi-Purpose satellite-3 (KOMPSAT-3), PlanetScope, and Sentinel-2A, ships docked within the port berths were visually detected. The berth utilization rate was calculated using the total number of ships that could be docked at the berths. The results showed variations in berth utilization rates on June 2, 2022, with values of 0.67, 0.7, and 0.59, indicating fluctuations based on the time of satellite image capture. On June 3, 2022, the value remained at 0.7, signifying a consistent berth utilization rate despite changes in ship types. A higher berth utilization rate indicates active operations at the berth. This information can assist in basic planning for new ship operation schedules, as congested berths can lead to longer waiting times for ships in anchorages, potentially resulting in increased freight rates. The duration of operations at berths can vary from several hours to several days. The results of calculating changes in ships at berths based on differences in satellite image capture times, even with a time difference of 4 minutes and 49 seconds, demonstrated variations in ship presence. With short observation intervals and the utilization of high-resolution satellite imagery, continuous monitoring within ports can be achieved. Additionally, utilizing satellite imagery to monitor changes in ships at berths in minute increments could prove useful for small and developing country ports where harbor management is not well-established, offering valuable insights and solutions.

Preliminary Design of PNUSAT-1 Cubesat for Vessel Monitoring (선박 모니터링을 위한 PNUSAT-1 큐브위성 시스템 예비 설계)

  • Kim, Haelee;Cho, Dong-hyun;Lee, Sanghoon;Park, Chanhwi;Lim, Ha Kyeong;Kim, Geonwoo;Kwak, Minwoo;Lee, Changhyun;Kim, Shinhyung;Koo, Inhoi;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.137-146
    • /
    • 2022
  • AIS(Automatic Identification System) is a device that automatically transmits and receives ship information and is mounted on the ship. AIS information of ships near the coast can be received on the ground, but when going out to sea more than 50 nautical miles, communication with the ground is cut off. To solve this problem, ship information can be transmitted to the ground through an AIS satellite equipped with an AIS receiver. There is no case of AIS satellite development in Korea yet, and many domestic shipping companies are using overseas AIS services. PNUSAT-1 is a 1U+ CubeSat, developed by Pusan National University, and it is equipped with an AIS receiver for monitoring of ships and transmitting ship information to the ground. Since the mission data of PNUSAT-1 is in text format, the data size is not large. In consideration of this, communication equipment, low-precision sensors, and actuators were selected. In this paper, system preliminary design of PNUSAT-1 was performed, requirements for mission performance, operation scenario and mode design, hardware and software selection, and preliminary design of each subsystem were performed.

A Case Study on Assembly Block Operations Management at Shipyard (조선 조립블록 운영관리에 관한 사례연구)

  • Park, Chang-Kyu;Seo, Jun-Yong
    • Korean Management Science Review
    • /
    • v.23 no.2
    • /
    • pp.175-185
    • /
    • 2006
  • How to efficiently manage assembly blocks at shipyard has been a hot management issue in the shipbuilding Industry, because it has significantly influenced on the productivity of shipbuilding process. This paper introduces the real practice of assembly block operations management in Hyundai Heavy Industries (HHI) and the Ship Assembly Block Operations Optimization (SABOO) project that h3s been launched in HHI as an academy-and-industry collaborative project, aimed to diagnose problems, propose possible solutions, and develop a prototype system in order to search ways of improving the assembly block operations management. Through the field interviews, observations, and benchmarking studies, the SABOO project diagnosed the most rudimental and urgent problem and proposed possible solutions. In addition, the SABOO project developed the prototype system that embodied the visual function of monitoring the shipyard on a real-time and the Interactive block assignment function that utilized the assembly block assignment algorithm developed by the project. As a whole, the SABOO project tested the possibility and gained an insight in extending the functions of block transportation/stockyard management system.

Novel Long-period Fiber Grating devices for Monitoring the Deformation of Ship Hull (선체의 변형을 감지하기 위한 새로운 형태의 장주기 광섬유 격자 소자)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.761-767
    • /
    • 2007
  • We have developed novel optical-fiber sensors based on strain-induced long-period fiber gratings for monitoring the deformation of a hull. They have no external pressure for sustaining the mechanical formed gratings. The pressure, which provides a force to form the periodic grating along the single mode fiber, was realized by the bonding strength of a photopolymer. To reduce the polarization dependency of the sensors caused by the asymmetry structure of gratings, a Faraday Rotator Mirror (FRM) was utilized in this experiment. We have realized the polarization-insensitive function of the proposed sensors. The change of an external strain are measured by an optical spectrum analyzer. When the external stain increases. the attenuation at the resonant wavelength decreases and the loss peak was slightly shifted to the shorter wavelength.